Automated Facial Age Estimation

Mei Ngan + Patrick Grother

Information Technology Laboratory
National Institute of Standards and Technology (US),
United States Department of Commerce
NTIA
Thursday, November 6, 2014

What is automated facial age estimation NLS

How old are these people?

Estimated Age: 46
True Age: ??

Estimated Age: 26
True Age: 32

Estimated Age: 16 True Age: 32

Age Estimation Accuracy \& Error over Large Homogeneous Population of 6M

For the most accurate algorithm, 67\% of estimates are accurate within 5 years with a Mean Absolute Error (MAE) of 4.3 years.

Age Estimation Accuracy \& Error by Age Group NLT

Age Estimation Accuracy \& Error by Gender

Results:

All algorithms estimate age more accurately on males than females.

Face Recognition Accuracy By Age Group

Identification miss rates by age group NTT

$$
\begin{aligned}
& >\text { Older } \leftarrow[56,120] \\
& >\text { Parents } \leftarrow[31,55] \\
& >\text { Young } \leftarrow[20,30] \\
& >\text { Teen } \leftarrow[14,19] \\
& >\text { Pre } \leftarrow[9,13] \\
& >\text { Kid } \leftarrow[4,8] \\
& >\text { Baby } \leftarrow[0,3]
\end{aligned}
$$

Visa images:

Enrolled size, N = 19972

Mated searches = 19972
Non-mated searches = 203082

One-to-many "miss rate"
FNIR when threshold set to produce a false positive in only 1 in 100 nonmate searches $($ FPIR $=0.01)$

Identification miss rates by age group, algorithm NGT

Accuracy = F(Age, Ageing)

» Baby $\leftarrow[0,3]$
» Kid $\leftarrow[4,8]$
» Pre $\leftarrow[9,13]$
» Teen $\leftarrow[14,19]$
» Young $\leftarrow[20,30]$
» Parents $\leftarrow[31,55]$
» Older $\leftarrow[56,120]$

Mean time lapse $=1.6$
Mean time lapse $=3.0$
Mean time lapse $=3.9$
Mean time lapse $=2.7$
Mean time lapse $=2.0$
Mean time lapse $=2.1$
Mean time lapse $=2.2$

Accuracy by age group :: Summary Nاك

» Using visa photographs, younger people, especially but not limited to children, are more difficult to recognize.
» Lifelong trend to be more easily recognized. This is a big effect, larger than other drivers in face recognition.
» Two effects:

- Repeatability: Older people more easily recognized as themselves.
- Distinguishability: Older people more easy to distinguish from others.

Face Visa Data :: Accuracy(Age, ΔT) NTT

Face Visa Data :: Accuracy(Age, ΔT) NTT

Face Ageing Quantification + Relevance

Patrick Grother + Mei Ngan
Information Access Division
National Institute of Standards and Technology

NTIA Meeting, Washington, DC Thursday, November 6, 2014

Ageing: Permanent Appearance Change

Dwight D Eisenhower

ALGORITHM X

ALGORITHM Z

0.647
0.595

0.601
0.578

0.599
0.565

0.579
0.548

Green indicates successful 1:1 authentication at $\mathrm{FMR}=0.001$. Red indicates failure.

FACE AGEING \rightarrow DECREASED SIMILARITY. IS THERE AN ANALOGOUS EFFECT FOR OTHER MODALITIES?

Photographs on exhibit at Museum of Modern Art, NYC NY Times Magazine Sunday Oct 32014

The Brown Sisters

Photographed every year from 1975-2014

Brown Sister \#1

FR
ALgORITHMS
0.632

T~40 Years

Y	3004	2954	2755	2845	2781
Z	0.622	0.616	0.613	0.517	0.426

Brown Sister \#2

FR

ALGORITHM

 X
0.600
0.610
0.605

Y	2863	2821	2758	2752	2824
Z	0.617	0.593	0.506	0.531	0.533

Brown Sister \#3

FR

ALGORITHM

| X | 0.673 | 0.635 | 0.627 | 0.607 | 0.586 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Y | 2847 | 2649 | 2687 | 2637 | 2630 |
| Z | 0.610 | 0.511 | 0.524 | 0.595 | 0.472 |

Brown Sister \#4

FR

T~40 Years

ALGORITHM

0.603

0.578

Y	3055	2795	2743	2847	2607
Z	0.632	0.516	0.475	0.524	0.432

Verification over 40 years

Reasoning about Ageing

» The simplest conception of ageing is that:

- Accuracy $=F($ Time-of-Enrollment - Time-of-Recognition $)=F(\Delta T)$
» And we all ageing "steadily":
- Accuracy = a - b ΔT
» Inexorable change:
"if we're lucky, or simplistic, linear ageing"
"It's a one way street, and downhill at that"
- Accuracy $=F($ monotone $(\Delta T))$
- Modulo cosmetics(?), botox(?), surgery(?) and ... photoshop
» But at least it's graceful:
- Accuracy $=F($ slowly varying function $(\Delta T, n)$)
- Absent injury, disease, abuse
» But ... complications
- Unsteady ageing: "Five years at 30 is not five years at 40"
- Accuracy $=$ F(Age-at-Enrollment; ΔT) or, simple Taylor expansion,
- Accuracy $=$ F(Age-at-Enrollment, Age-at-Recognition)
- Person-specific ageing:
"Some age better than others"
- Accuracy $_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}}$ (Age-at-Enrollment, Age-at-Recognition) subscript i

Longitudinal Analysis

Quantifying Permanence Using Data from a Large-Population Operational System

Ageing :: Longitudinal data
Brad Wing

ALGORITHM E20A

0.578
0.532
0.541

ALGORITHM J20A
0.589
0.587
0.579
0.569

Green indicates successful 1:1 authentication at $\mathrm{FMR}=0.001$.
Red indicates failure.
LONGITUDINAL ANALYSIS APPLIED TO ALGORITHM SCORE DATA

scores over time

TRAJECTORIES INDICATE HETEROGENEITY - INTERCEPTS (AND GRADIENTS) VARY WITH QUALITY OF THE ENROLLMENT IMAGE cf. DODDINGTON’s ZOO
» Often, visually flat
» Considerable variance within subject
» Considerable variance between subjects
» Irregular sampling
» Imbalanced sampling
\gg Mixed effects models

- Shared population part
- Individual part

Quantifying permanence via mixed-effects regression

Time since enrollment

Subject to assumptions:

$$
\begin{aligned}
& \epsilon_{i j} \sim N\left(0, \sigma_{\epsilon}^{2}\right) \\
& {\left[\begin{array}{c}
\psi_{0 i} \\
\psi_{1 i}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\sigma_{0}^{2} & \sigma_{01}^{2} \\
\sigma_{10}^{2} & \sigma_{1}^{2}
\end{array}\right]\right)}
\end{aligned}
$$

Model for the j-th score from the i-th eye

$$
H D_{i j}=\pi_{0 i}+\pi_{1 i} T_{i j}+\epsilon_{i j}
$$

Intercept is sum of population average term, the fixed effect, and an eye-specific random effect

$$
\pi_{0 i}=\gamma_{00}+\psi_{0 i}
$$

Slope is sum of population average term, the fixed effect, and an eye-specific random effect

$$
\pi_{1 i}=\gamma_{10}+\psi_{1 i}
$$

Permanence stated by the population wide rate at which scores are decreasing.
MIXED EFFECTS MODEL RESPECT IDENTITY INFORMATION. SIMPLE LINEAR REGRESSION, IN YELLOW, DOES NOT AND HAS OTHER PROBLEMS

Conclusions

» Brown sisters: existence proof that 1:1 face authentication is possible over thirty years

- But scores become weaker.
- Successful 1:N identification demands stronger scores
» No good long term face ageing studies. e-Passports and digital photography will change that... eventually.
- And suitable longitudinal analysis methods are published (NIST, MSU)
» But, there's a "so what" for some use cases:
- Algorithms improve on a timescale shorter than ageing
- Identity credentials are re-issued on a timescale shorter than ageing
- But possibility to recycle old photos
- Law enforcement + counter terrorism functions have no such luxury

FR in Video :: Scope

 Face In Video Evaluation (FIVE)

Goals

» Comparative accuracy of algorithms
» Absolute accuracy
» Comparative computational cost
» Iterative development with tech. providers
» Threshold calibration
» How to analyze + metrics \rightarrow ISO/IEC 30137-2
» Failure analysis \rightarrow ISO/IEC 30137-1

Out-of-scope

» Re-identification
» Anomaly detection
» Detection of un-coop, evasion
» Other modalities + non-human

S2S - V2S - S2V - V2V :: Watchlist Surveillance NLT

Challenges for FR

» Pose

- Compound rotation of head to optical axis
» Resolution
- Range to subject
- Legacy camera
- Adverse compression for storage or transmission
- Motion blur

Surveillance Video Related to Boston Bombings

Off angle recognition: The problem for video NLT

S2S - V2S - S2V - V2V

YouTuhe

Patrick Grother, National Institute of Standards \& Technology, USA

32

S2S - V2S - S2V - V2V

Example applications:

1. Identity clustering
2. Re-identification

David Cameron appears on David Letterman

Thanks

patrick.grother@nist.gov

Time variation in three modalities

Iris

» Healthy

- Blink occlusion
- Gaze direction
- Dilation varies with mood, consumption, ambient light
» Cosmetic
- Contact lenses
- Glasses
» Ageing
- Pupil constriction
- Palpebral aperture
» Disease

Fingerprint

» Healthy

- Facial expression
- Mouth movement
- Head motion, head orientation
- Facial hair
» Cosmetic
- Moisturizers
» Ageing
- Arthritic fingers

Face

» Healthy

- Facial expression
- Mouth movement
- Head motion, head orientation
- Facial hair
» Cosmetic
- Makeup
» Ageing
- Soft tissue folds
- Stoop - pitch forward

