

Automated Facial Age Estimation

Mei Ngan + Patrick Grother

Information Technology Laboratory National Institute of Standards and Technology (US), United States Department of Commerce

> NTIA Thursday, November 6, 2014

What is automated facial age estimation NST

How old are these people?

Estimated Age: 46 True Age: ??

Estimated Age: 26 True Age: 32

Estimated Age: 16 True Age: 32

Age Estimation Accuracy & Error over Large Homogeneous Population of 6M

For the most accurate algorithm, 67% of estimates are accurate within 5 years with a Mean Absolute Error (MAE) of 4.3 years.

NE

Age Estimation Accuracy & Error by Age Group NST

Ē

----- B31D ---- E30D --- E31D --- E32D --- F30D ---- K10D --- P30D ---- Q10D

Age Group	Num Images	B30D	B31D	E30D	E31D	E32D	F30D	K10D	P30D	Q10D
0–17	1605807	2.6	3	5.3	5.4	5.3	18.6	21	6.1	10.9
18–55	3781607	4.9	4.5	5.5	5.5	4.6	5.6	6.6	7.6	7
56–100	785287	6.2	5.8	13.9	14	9	14.7	14	16.7	10.9

Mean Absolute Error (years)

Age Estimation Accuracy & Error by Gender

Mean Absolute Error (years)

Results:

All algorithms estimate age more accurately on males than females.

NS

Face Recognition Accuracy By Age Group

Identification miss rates by age group NGT

- » Older ← [56,120]
- » Parents [31,55]
- » Young ← [20,30]
- » Teen ←[14,19]
- » Pre ← [9,13]
- » Kid ← [4,8]
- » Baby ← [0,3]

Visa images: Enrolled size, N = 19972

Mated searches = 19972 Non-mated searches = 203082

7

One-to-many "miss rate" FNIR when threshold set to produce a false positive in only 1 in 100 nonmate searches (FPIR = 0.01)

Identification miss rates by age group, algorithm NST

Accuracy = F(Age, Ageing)

» Baby ← [0,3]

» Kid ← [4,8]

» Pre ← [9,13]

- Mean time lapse = 1.6
 - Mean time lapse = 3.0
- Mean time lapse = 3.9
- » Teen ←[14,19]
- Mean time lapse = 2.7» Young ← [20,30] Mean time lapse = 2.0
- » Parents ← [31,55] Mean time lapse = 2.1
- » Older ← [56,120] Mean time lapse = 2.2

Accuracy by age group :: Summary

- » Using visa photographs, younger people, especially but not limited to children, are more difficult to recognize.
- » Lifelong trend to be more easily recognized. This is a big effect, larger than other drivers in face recognition.
- » Two effects:
 - **Repeatability:** Older people more easily recognized as themselves.
 - **Distinguishability:** Older people more easy to distinguish from others.

Face Ageing Quantification + Relevance

Patrick Grother + Mei Ngan

Information Access Division National Institute of Standards and Technology

> NTIA Meeting, Washington, DC Thursday, November 6, 2014

Ageing: Permanent Appearance Change

Dwight D Eisenhower

Green indicates successful 1:1 authentication at FMR = 0.001.

Red indicates failure.

FACE AGEING \rightarrow DECREASED SIMILARITY. IS THERE AN ANALOGOUS EFFECT FOR OTHER MODALITIES?

Photographs on exhibit at Museum of Modern Art, NYC

ROLEars

2014

See Susan Minot's text in NY Times Magazine Sunday Oct 3 2014

The Brown Sisters

1975

Photographed every year from 1975-2014

Ageing

Х

Y

Ζ

Ageing

Ageing

18

Ageing

Verification over 40 years

20

Reasoning about Ageing

- The simplest conception of ageing is that: ≫
 - Accuracy = $F(Time-of-Enrollment Time-of-Recognition) = F(\Delta T)$
- And we all ageing "steadily": >>
 - Accuracy = $a b \Delta T$
- Inexorable change: ≫
 - Accuracy = $F(monotone(\Delta T))$
 - Modulo cosmetics(?), botox(?), surgery(?) and ... photoshop
- But at least it's graceful: >>
 - Accuracy = $F(slowly varying function(\Delta T, n))$
 - Absent injury, disease, abuse
- But ... complications >>
 - "Five years at 30 is not five years at 40" Unsteady ageing:
 - Accuracy = $F(Age-at-Enrollment; \Delta T)$ or, simple Taylor expansion,
 - Accuracy = F(Age-at-Enrollment, Age-at-Recognition)
 - Person-specific ageing: *"Some age better than others"*
 - Accuracy_i = F_i(Age-at-Enrollment, Age-at-Recognition) subscript i

21

"if we're lucky, or simplistic, linear ageing"

"It's a one way street, and downhill at that"

Longitudinal Analysis

Quantifying Permanence Using Data from a Large-Population Operational System

Green indicates successful 1:1 authentication at FMR = 0.001.Red indicates failure.

LONGITUDINAL ANALYSIS APPLIED TO ALGORITHM SCORE DATA

Quantify ageing :: Individual recognition scores over time

TRAJECTORIES INDICATE HETEROGENEITY – INTERCEPTS (AND GRADIENTS) VARY WITH QUALITY OF THE ENROLLMENT IMAGE cf. DODDINGTON'S ZOO

- » Often, visually flat
- » Considerable variance within subject
- » Considerable variance between subjects
- » Irregular sampling
- » Imbalanced sampling
- » Mixed effects models
 - Shared population part
 - Individual part

NIS

Time since enrollment

Subject to assumptions:

$$\begin{aligned} \epsilon_{ij} &\sim N(0, \sigma_{\epsilon}^2) \\ \begin{bmatrix} \psi_{0i} \\ \psi_{1i} \end{bmatrix} &\sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01}^2 \\ \sigma_{10}^2 & \sigma_1^2 \end{bmatrix} \right) \end{aligned}$$

Model for the j-th score from the i-th eye

$$HD_{ij} = \pi_{0i} + \pi_{1i}T_{ij} + \epsilon_{ij}$$

Intercept is sum of population average term, the *fixed effect*, and an eye-specific *random effect*

 $\pi_{0i} = \gamma_{00} + \psi_{0i}$

Slope is sum of population average term, the *fixed effect*, and an eye-specific *random effect*

$$\pi_{1i} = \gamma_{10} + \psi_{1i}$$

Permanence stated by the population wide rate at which scores are decreasing.

MIXED EFFECTS MODEL RESPECT IDENTITY INFORMATION. SIMPLE LINEAR REGRESSION, IN YELLOW, DOES NOT AND HAS OTHER PROBLEMS

Conclusions

- » Brown sisters: existence proof that 1:1 face authentication is possible over thirty years
 - But scores become weaker.
 - Successful 1:N identification demands stronger scores
- » No good long term face ageing studies. e-Passports and digital photography will change that... eventually.
 - And suitable longitudinal analysis methods are published (NIST, MSU)
- » But, there's a "so what" for some use cases:
 - Algorithms improve on a timescale shorter than ageing
 - Identity credentials are re-issued on a timescale shorter than ageing
 - But possibility to recycle old photos
 - Law enforcement + counter terrorism functions have no such luxury

FR in Video :: Scope

FIVFace In Video Evaluation (FIVE)

Goals

- » Comparative accuracy of algorithms
- » Absolute accuracy
- » Comparative computational cost
- » Iterative development with tech. providers
- » Threshold calibration
- » How to analyze + metrics → ISO/IEC 30137-2
- » Failure analysis → ISO/IEC 30137-1

Out-of-scope

- » Re-identification
- » Anomaly detection
- » Detection of un-coop, evasion
- » Other modalities + non-human

NL

S2S – V2S – S2V – V2V :: Watchlist Surveillance

Challenges for FR

» Pose

- Compound rotation of head to optical axis
- » Resolution
 - Range to subject
 - Legacy camera
 - Adverse compression for storage or transmission
 - Motion blur

NIST

Off angle recognition: The problem for video

ISO standard tolerance for pristine imagery

NIST

S2S - V2S - S2V - V2V

Search = Mugshot

Example applications:

- 1. Media search
- 2. Asylum reidentification

Patrick Grother, National Institute of Standards & Technology, USA

NIST

S2S - V2S - S2V - V2V

Example applications:

- 1. Identity clustering
- 2. Re-identification

Search = Video corpus

Enrolled = Video corpus

David Cameron appears on David Letterman

Thanks

patrick.grother@nist.gov

Time variation in three modalities

34

Iris		Fingerprint	Face			
»	 Healthy Blink occlusion Gaze direction Dilation varies with mood, consumption, ambient light 	 Healthy Facial expression Mouth movement Head motion, head orientation Facial bair 	 Healthy Facial expression Mouth movement Head motion, head orientation Facial bair 			
»	Cosmetic Contact lenses Glasses 	 » Cosmetic • Moisturizers 	 Cosmetic Makeup 			
>>>	Ageing Pupil constriction Palpebral aperture 	 Ageing Arthritic fingers 	 » Ageing • Soft tissue folds • Stoop – pitch forward 			
>>>	Disease					