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ABSTRACT

This report is concerned with the spectral representation of analog M
signals, with particular attention to FDM/FM satellite communication systems.
The FM spectral modeling and gaussian approximation principles are analyzed and
extended to develop computer simulation  programs capable of providing
representative FM spectra. A generalized program is developed to accommodate a
variety of baseband and preemphasis characteristics, and adapted to generate
FDM/FM telephony spectra. The program features the automatic validation and
generation of the gaussian spectrum model if applicable, or the automatic
simulation of the modulation process to generate the FM spectrum samples
otherwise. The program is used to simulate a collection of satellite FDM/FM
telephony spectra, which are to be applied as input data into other available
interference analysis programs, as part of a major automated computer capability
dedicated to the comprehensive assessment of orbital congestion and spectrum
resource management concerns pertinent to national and international satellite
communication systems scenarios.

KEY WORDS

FM Spectrum Models
Gaussian Spectral Approximation
FM Spectrum Simulation
FDM/FM Telephony Spectra
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SECTION 1

GENERAL INTRODUCTION

The National Telecommunications and Information Administration (NTIA) is
responsible for managing the radio spectrum allocated to the U.S. Federal
Government, Part of NTIA's responsibility is to: "...establish policies
concerning spectrum assignment, allocation and use, and provide the various
Departments and agencies with guidance to assure that their conduct of
telecommunications activities is consistent with these policies" (Department of
Commerce, 1980). In support of these requirements, NTIA performs spectrum
resource assessments to identify existing or potential spectrum utilization and
compatibility problems among the telecommunication systems of various departments
and agencies. NTIA also provides recommendations to resolve any spectrum usage
or allocation conflicts, and to improve the spectrum management functions and
procedures,

NTIA is engaged in the development of an automated computer capability to be
used by the Federal Government for the comprehensive assessment of mnational and
international satellite communication systenms. The program will feature both
interference evaluation and logical optimization of a varying systems population,
thus supporting the orbit and spectrum resource management functions. The
effective coexistence of multiple satellite systems and service signal
transmissions represents a critical concern from the orbital congestion,
communications interference and service reliability standpoints.

The orbital and spectrum congestion introduces unwanted signals into the
antennas and receivers of dedicated satellites and earth stations. The
interfering signals processed by the satellite transponder and earth station
receiver equipment ultimately appear as degradation effects on the desired output
information, whether it be analog messages or digital symbols. The 1link
geometries and power budgets of the various satellite systems establish desired
and interference signal levels at the receiving station inputs, which need to be
converted into output degradation effects so as to guide the logical assessment
of the operational scenarios. ,

The development of receiver transfer characteristics to evaluate the
interference degradation effects requires accurate spectral representations of
the signals involved (Jeruchim and Kane, 1970; Pontano, et al, 1973; Das and
Sharp, 1975). Many existing models and formulations contain simple qualitative
assumptions or restricted parametric conditions as validity constraints, with
more accurate spectral representations needed to employ the available results or
develop new ones as required. For example, the compact formulations available
for analog FM applications are - conditioned on extreme high or low modulation
indices, with representation uncertainties hindering their usage in intermediate
index situations. '

The sections that follow are concerned with the spectral representation for
analog FM applications. The spectral modeling and gaussian approximation
principles are first identified in Section 2, and then extended to develop
effective FM spectrum simulation programs capable of resolving the modeling
concerns and providing representative FM spectra. The programs developed consist
of a specific one dedicated to a particular baseband modulation, plus a



generalized one capable of handling a wide variety of modulation characteristics.
The specific program presented in  Section 3  features the only nontrivial
modulation case where a compact formulation results for the output spectra. The
program algorithm reproduces the output spectrum formula, thus bypassing the need
to simulate the modulation process itself.

The generalized simulation program of Section 4 then accommodates a variety
of baseband and preemphasis characteristics with minimal assumptions, by actually
simulating the modulation process via equivalent block functions and transform
processors. This program was further adapted to produce FDM/FM telephony spectra
by including a baseband spectrum driver and CCIR preemphasis, with the high and
low baseband frequencies and the rms multichannel frequency deviation selectable
by the user. It also features an adjustable bandwidth expansion parameter that
accounts for the FM spectral expansion while controlling the distortion and
aliasing effects of the discrete representations.

The wvalidity of the gaussian  approximation  for the FM  spectral
representation under high modulation index conditions was analyzed using both the
specific and generalized FM spectrum programs. A gaussian spectrum generation
algorithm was included in each program, and spectral comparisons were performed
to identify the modulation index constraints needed for the gaussian spectral
approximation to hold. The programs can thus deliver either the simulated FM
spectra or their wideband gaussian approximation as needed, and can be wused as
inputs to other programs dedicated to evaluate receiver transfer characteristics
from given spectral representations of the desired and interference signals.

The generalized FM spectrum generation program was employed to generate a
collection of FDM/FM telephony spectra representative of existing and planned
satellite communication systems. The available system specifications are used to
provide the input parameters needed for the spectral generation, and the FDM/FM
output spectra resulting from the simulation program are automatically computed
and plotted along with the gaussian spectral representation for comparison
purposes.

The FDM/FM spectral simulation results are presented in Section 4. The
evolution of the gaussian spectral approximation as the modulation  index
increases is noted to be really governed by the equivalent rms phase deviation
parameter, which depends both on the rms modulation index and the low/high
frequency ratio of the multichannel baseband modulation. An effective
formulation of this dependence is provided in Section 5, and incorporated into
the simulation  program to automatically trigger the gaussian spectral
approximation when valid. ”

The generalized spectrum simulation program is now operational and automated
to deliver the FDM/FM system spectra in an efficient way. The user selects an
equivalent set of modulation parameters, and the program first computes the rms
phase deviation to decide on the gaussian spectral approximation validity. If
the latter is valid, the program next computes the appropriate standard deviation
for the gaussian curve from the input parameters, and proceeds to generate the
gaussian spectrum samples., Otherwise, the program negates the gaussian logic and
proceeds with the FM simulation process to deliver the proper FM spectrum
samples., .




SECTION 2
FM SPECTRAL MODELING AND GAUSSIAN REPRESENTATIONS

The FM signal spectrum models presently employed only have a compact
formulation in certain cases. At low modulation indices, the FM output spectrum
is effectively approximated by ~a discrete carrier component plus a
double-sideband continuous spectrum. The latter has the same shape as the
equivalent lowpass spectrum that phase modulates the carrier under low index
conditions. In particular, such lowpass spectrum will be identical to the input
baseband spectrum when ideal FM preemphasis (parabolic power weighting) is
employed. "

At high modulation indices, the FM output spectrum is characterized by a
small discrete carrier component plus a predominant continuous gaussian spectrum
centered around the carrier component. The relative power distribution between
these discrete and continuous components is uniquely specified by the rms phase
deviation. The only other information needed to specify the FM output spectrum is
then the gaussian standard deviation or variance parameter, which controls the
effective width of the continuous gaussian portion of the spectrum. This
parameter has been formulated in terms of the rms phase or frequency deviation
employed, and renders the FM spectrum model characterization under high index
conditions.

The gaussian spectrum model 1is assumed to hold regardless of the input
baseband spectrum or preemphasis characteristic, as long as the high modulation
index exists., However, the identification of what represents a high index
condition remains somewhat arbitrary. Also, the variety of baseband spectra,
preemphasis characteristics, modulation indices and frequency deviations employed
in the different FM signals of interest spans a considerable range of spectral
shapes and parameter values, which hinders the spectral approximation evaluation.
Hence, the FM spectral modeling issue should be given due attention to assure
accurate signal characterizations and permit reliable interference analyses.

Another pertinent issue consists of the parametric value assignment in the
gaussian spectrum model. The standard deviation parameter in the gaussian
formula is sometimes specified from the rms phase deviation in a PM formulation,
and sometimes from the rms frequency deviation in an FM formulation, as discussed
in what follows. The conversion 1is tractable in most baseband cases without
preemphasis, but the preemphasized baseband cases can lead to computational
difficulties. The preemphasis network can be designed to preserve the rms phase
or frequency deviation but not both in general, and the evaluation of the one not
being preserved may be difficult yet required if the gaussian spectral
representation is to be employed.

GAUSSIAN SPECTRAL APPROXIMATION PRINCIPLES

The original principle supporting the gaussian spectral approximation under
high index conditions is based on Woodward's theorem (Blackman and McAlpine,
1969). It states that the limiting form of the FM power density spectrum as the
index increases is given by the probability distribution of the instantaneous



modulating frequency. Hence, the assumption of gaussian statistics in the
baseband modulating signal (with arbitrary spectrum) directly induces a limiting

gaussian FM spectrum for high indices under the theorem, with the gaussian
standard deviation given by the rms frequency deviation.

The modulation index magnitude needed for an effective representation by the
gaussian spectrum was not resolved in Woodward's theorem. The identification of
crossover index bounds is hindered by the fact that they may vary with the
modulating signal spectrum, since all Woodward's theorem provides is for a
gaussian spectrum convergence in the limit.  There have been some theoretical
extensions of the theorem, with the main results consisting of autocorrelation or
spectrum error estimates or bounds as a function of the rms index or frequency
deviation, as well as some spectral simulation results for specific baseband
spectra. - However, the error’ performance and criteria were found to vary in
prediction accuracy capability with the modulation index value and the baseband
spectral shaping involved (Blackman and McAlpine, 1969; Algazi, 1968),

Another principle supporting the gaussian spectral approximation under high
index conditions relies on a power series expansion (Middleton's expansion) of
the autocorrelation function of the modulated signal, again assuming baseband
gaussian statistics but arbitrary spectrum (Abramson, 1963). The series terms
are each characterized by a different power of the autocorrelation function of
the equivalent baseband phase modulation including any preemphasis effects. The
autocorrelation function of the frequency modulated signal becomes a weighted
superposition of these powers of the autocorrelation function of the phase
modulating signal.

The power density spectrum of the modulated signal becomes a weighted
superposition of spectral terms obtained from the series expansion. Each spectral
term consists of an n-th order convolution of the baseband phase modulating
spectrum, with the number of convolutions varying with the series terms. Each
spectral convolution is then weighted by a different coefficient and superposed
to yield the resultant FM spectrum. The gaussian spectral approximation
essentially consists of motivating how the weighted superposition of different
spectral shapes can be manipulated under high index conditions to result in a
gaussian spectrum (Abramson, 1963).

Analysis of the Series Expansion Representation

The equivalent phase modulating signal is assumed to be a stationary
gaussian process with zero mean and fixed standard deviation (B radiams). It
modulates a sinusoidal carrier of fixed amplitude (A) and frequency (w . radians
per second), so that the correlation function (t) of the modulated signal y(t)
can be expressed in terms of the correlation’ function R (t) of the modulating
signal x(t) as (Abramson, 1963):

2 _ _ : : :
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The values Rx(o) = Bz and Ry(o) = AZ/Z represent the average power in the
modulating and modulated signals, respectively. It 'is convenient to use
normalized (unit power) correlation functions r(t) = R(t)/R(o) and corresponding
power density spectra s(f) = S(f)/R(o) for both signals, and to work with an
equivalent lowpass spectral version of the modulated signal (which need only be
shifted and scaled to the carrier frequency to obtain the actual spectrum). The
equivalent lowpass correlation function and power spectrum of the modulated
signal are given by (Abramson, 1963): .

= e B2 [l-r (D] _ -2 ¢ g2n
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n=9o
and
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n=1
The power spectrum expression consists of a weighted superposition of the
form sy(f) = Za,C,(f), where the n=o spectral term corresponds to the discrete
carrier component with C,(f) =38(f). The other Chlf) = sy(f) : sx(f) spectral

terms are each an n-th order convolution of the normalized modulating spectrum
sx(£f). Each of these Cp(f) spectral terms has a unit area, since sx(f) has this
property and it is preserved through the successive convolutions (e.g., sx(f) has
statistical p.d.f. properties and C,(f) behaves 1like the p.d.f. of a sum of
independent identical random variables).
2

The weighting coefficients are given by ap = e-B .an/(n!) so that they are
poisson distributed over (n) with parameter A = B2, These non-negative
coifficients add to unity so that each represents the fraction of the total power
(A“/2) in the modulated signal that is being contributed by each series term
(since the C,(f) spectra all contribute unit power)., In summary, the equivalent
spectrum of the modulated signal has been developed as a weighted superposition
of spectral terms, where the Cp(f) convolution functions control the spectral
shapes being superimposed, while the a, weights control their relative magnitudes
and specify their power contribution to the total modulated signal power.

At low rms phase deviations (B), only the first few series coefficients are
needed to essentially reproduce the total signal power. As the B-value
increases, the power distribution becomes more spread out (rather than
concentrated) on many (rather than few) terms with intermediate values of (n),
with other terms having small or large (n) values contributing little power.
Hence, the significant terms needed to preserve a given power percentage in a
truncated (at both sides) series representation can be readily identified from
the statistical poisson distribution, which specifies the a, coefficient
magnitudes. The procedure is presented in TABLE 1 as a function of the rms phase
deviation (B) for various power percentages (90,95,99%) to be preserved in the
modulated signal.



TABLE 1

SIGNIFICANT TERMS (VALUES OF n) VS RMS PHASE DEVIATION (B)
FOR VARIOUS POWER PERCENTAGES

A= B  n(90z) 1n(95%) n(99%)
1 1.000 0-2 0-4 0-4
2 1.414 0-5 0-5 0-6
3 1.732 1-6 0-6 0-8
4 2.000 1-7 -8 0-9
5 2.236 2-9 1-9 0-11
6 2,449 2-10 2-11 1-13
7 2.646 3-11 2-12 1-14

8 2.828 4-13 3-13 2-16
9 3.000 4-13 4-15 2-17

10 3.162 5-15  4-16 3-18
11 3.317 6~16 5-17 4=20
12 3.464  7-18  6-19 4=21
13 3.606 7-18  6-20 5-23
146 3.742  8-20 7-21 5-24
15 3.873 9-21 8-23 6-25
16  4.000  10-23 9-24 7-27
17 4,123 10-23 9-25 7-28
18 4,243 11-24 10-26 8-29
19 4.359  12-26 11-27 9-31
20 4,472 13=27 12-29 10-32




These results can be directly used for the selection of the number og series

and spectral convolutions needed in a truncated representation or
gigziation ofpthe modulated signal spectrum. The entries in TABLE 1 sh9w that up
to nine terms besides the carrier component may be needed for B<2 radians, with
the number reaching 17, 27, 32 terms as the index increases 'to 3, ?, 5 radians.
Some spectral simulations of FDM/FM telephony = are available in the open
literature for 8= 1 to 5 radians, but employing only ten ser%es terms in the
truncated representation (Ferris, 1968). The results of TABLE 1 111ustra%e that
not only more terms are actually needed for such range, but that the first Fen
terms have a negligible or secondary contribution once the rms phase deviation

exceeds four radians.

Analysis of the Gaussian Spectral Approximation

The gaussian spectrum approximation for high g-values must account for both
the spectral shaping provided by the convolution terms and the power distribution
provided by the weighting coefficients. The shape of each of the convolution
functions Cn(f) approaches a gaussian form as (n) increases based on the central
limit theorem. All these limiting gaussian spectra have zero mean if sy(f) is a
lowpass spectrum, but their standard deviations are different for each (n) value.
Indeed, their respective = variances are given by 6 2 =n.B2 where
B 2= fzsx(f)df is the rms bandwidth squared of the: phase %odulati%g signal.
Hence, even - though all high-order spectral convolutions - are approximately
gaussian, each converges to a distinct gaussian spectrum with their rms spectral
widths varying with (n) according to dn = /HZBX.

The poisson dastribution of the weighting coefficients (an) can itself be
approximated for B large by discrete point samples from a gaussian envelope with
mean A = 82 and variance A = B2as shown in Figure l. The solid lines represent
the actual poisson values whose center 1location and width distribution : varies
with A = 82, but which ~follow the dotted gaussian envelopi approximation when
A = B82is large. The poisson distribution peaks at n = A = 8° (i.e., the nearest
integer to A = 82) with a magnitude ap= (27 ) 2 based on the gaussian envelope
peak. The2 atheE coefficients on both sides are reduced by a factor of
exp [- (n-B°)“/2B°] relative to the peak based on the gaussian envelope decay.

In sumnary, the superposition s_(f) = Za,C,(f) of poisson-weighted,
spectral convolution functions must account for the distinct convergence behavior
of the coefficients a, and the convolutions C,(f) when motivating the gaussian
spectral approximation. .The distinct limiting representations involved for each
series term are formulated below. They are governed by the gaussian envelope
approximation to the poisson distribution for the weighting coefficients, and by
the gaussian spectrum approximation via the central 1limit theorem for the
convolution functions. ' '
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The fact that each convolution function C,(f) approaches a distinct gaussian

shape does not imply that their weighted superposition can also be’assumed to be
gaussian. The following rationale is also 4dinvolved in motivating the gaussian
spectral representation: ' '

(a)v Only those series terms with n2R2will have significant weighting
coefficients and need be kept.

(b) Their associated Cn(f) functions can all be approximated by the same
curve by letting n = B“ for all terms kept, which removes the spectral width
variation with n.

() e series has now been reduced to (Zan).C(f), where C(f) = Cn(f) with
n =B%, and the sum of coefficients can be approximated by unity since only
significant terms were kept.

(d) The series has now become ‘just C(f), which is a gaussian spectral
function with standard deviation ¢ =B+B_as obtained by setting n =B“ in
Op = vn-By. X

(e) The equivalent lowpass power spectrum of the modulated signal is thus
approximated by

- (£2/9p2; 2
o~ (9728 B.%)

s(f)  p S (5)

f 2.2
2mR Bx



This development emphasizes that the gaussian spectral representation of the
modulated signal under high rms phase deviation conditions is not a
straightforward approximation. It not only requires that each convolution term
C,(f) be gaussian approximated, but also that the weighting coefficients
arlselectively cooperate to remove the spectral width variations with n and
approximate a single gaussian spectrum from the superposition of distinct
approximately gaussian spectra. Also, the standard deviation o=B8:B_ of the
gaussian spectral approximation can be noted to be a function of the mms phase
deviation (B) and the rms bandwidth (By) of the equivalent phase modulating

signal.

The critical role of the weighting coefficient distribution is further
emphasized by considering the special case where the modulating signal has itself
a gaussian spectrum, i.e.,

2 2.
2 o= (£7/2By%)
Sx(f) = B” . : | (6)
'ZTrBX2

In this case the C,(f) convolution, functjons in (4a) will all be exactly.
gaussian with zero mean and variance 0,“=1n-'B_° as in (4b), except for the n =0
discrete carrier component. The gaussian shape of each convolution term is now
exact rather than approximate, and it is wup to the distribution of the weighting
coefficients to render an approximately gaussian spectrum from the superposition
of exact but distinct gaussian spectra. This case clearly  illustrates that it
does not suffice to have each of the spectral convolutions converge to a gaussian
shape via the central limit theorem. These distinct gaussian shapes must still
be weighted and superimposed to yield a single gaussian representation which 1is
not an automatic result (DeRosa, 1976).
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SECTION 3

RECTANGLE CONVOLUTION PROGRAM FOR FM SPECTRUM SIMULATION

The previous sections have shown that the gaussian spectral approximation
for FM signals remains to be validated insofar as the modulation index
constraints and the baseband spectrum dependence is - concerned. A possible
approach consists of comparing the gaussian spectrum to the actual FM spectrum
obtained from theoretical, simulation or empirical results.” One tractable case
that features a -compact theoretical formulation. compatible - with = computer
simulation implementation is considered in this section.

The case in question consists of a lowpass rectangular baseband spectrum
that phase modulates the sinusoidal carrier. This case corresponds to a
parabolic frequency modulating spectrum, so that it can represent a rectangular
baseband spectrum followed by a parabolic preemphasis characteristic in FM
applications. The normalized phase modulating spectrum is given by sy(f) = /W
for If]l < W/2, and the interest is to derive the n-th order convolutions Cn(f) of
this spectrum, so as to form their weighted superposition with the coefficient
distribution governed by the rms phase deviation assumed.

A computer program Wwas developed at NTIA to imulate the compact
mathematical formulation representing the n-th order spectral convolutions C,(f).
There is no need to simulate the actual convolution operations, as exact
expressions for Cn(f) are available in an iterative form for any (n) value. The
computer simulation only requires the development of effective algorithms to
implement the iterations involved, and to generate the (ap) weighting
coefficients so as to form the ZIa,Cn(f) superposition representing the FM signal
spectrum. The gaussian spectral approximation of (5) was also implemented so as
to compare it to the actual FM spectrum obtained.

THE RECTANGLE CONVOLUTION PROGRAM PRINCIPLES

A transformation to a unit width rectangle (W = 1) defined over the unit
interval (0, 1) is convenient to exploit available theoretical results. If the
n-th order convolution function obtained under these conditions is denoted by
Fp(£f), with n=1 corresponding to the initial rectangle, then the transformation

1 , . |
Ca(£) = = Fy (—5—+ -f;-) - (7

yields the convolution functions of interest. The argument shift by n/2 centers
all the Fp(f/W) functions at the origin, and the scaling of the frequency
variable and the function magnitude removes the unit width premise.

The Fp(f) functions span the (o, n) interval and exhibit a peak at f = n/2,
since they represent n~th order convolutions of a wunit rectangle. The Fp(f)
functions can be ?esomposed into wunit width segments as shown in Figure 2, and
the notation Fn-k’(f) i$ used to denote the k-th segment of the n-th function
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Figure 2. Decomposition of Fn(f) into Fn(k)(f) segments.
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where 1 £ k <n. The motivation for this ’decompositiOn is that there exist
compact expressions for the Fy (k)(f) segments, with an iterative formulation
over (k) and (n) that can be exploited in a computer 31mulation to generate an
entire function from one segment (k iteration) and to superpose the weighted
functions to obtain the spectrum (n iteration).

The‘general »eXpression for an arbitrary k-th segment (1 <k <n) of an
arbitrary n—th function (n 2 1) is glven by (Cramer, 1945):

* k-1 SR , :
) - —2— X (1) (3‘) C(E-iPt kLK E<K (8)
(l’l—l)! j:o

and the segment iteration over (k) follows as

| K
g (64 gy P (k) gy 4 ( 1))' ( ) (f- k)n_ (9)
. 1

The wvalidity of these formulas was verified by independently evaluating the
first few convolution functions to match, and then performing induction proofs
over (k) and (n) to check the general expressions. The formulas reproduced the
convolution functions in question, and the induction relation was verified using
binomial coeffic1ent properties (Feller, 1968)

The F,(f) functions are symmetric about their peak at f = n/2, so there is
only need to evaluate the segments on one side of the peak to generate the
function. The evaluation was performed by developing a digital computer program
that simulated the formulas and produced point samples of one-half of each
function. = The program also included the appropriate shifting of these samples to
both sides of the origin, so as to deliver the symmetric left and right samples
needed to generate the G (£) functions centered at the origin.

The weighted superposition of the C,(f) functions as shifted versions of the.
F (f) functions can be accomplished in two ways. One approach consists of first
generating the entire shifted functions and then adding them on a weighted point
basis. This method requires careful selection of ‘the sampling points in the
unshifted F,(f) functions to assure the overlap of the shifted samples from
different 'functions,  Another approach consists of first fixing the shifted
sample points and only adding the specific weighted samples needed from each
unshifted function. " '

Both methods were investigated for computer simulation, and the first one
was implemented in the program. An effective overlap of the shifted samples from
different functions was provided by taking an even number of samples = per segment
in the unshifted functions. The peak of the unshifted functions lies at the
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middle of the midsegment if (n). is odd and at the boundary between two symmetric
midsegments if (n) is even. - The use of an even sampling rate per segment assures
the peak coverage regardless of  whether (n)- is odd or even, and the shifted
sample overlaps become assured when the peak overlaps are provided.

The weighting coefficients ap were generated by the program for a given rms
phase deviation (B) wusing the poisson distribution formula. The number of
coefficients needed was established according to TABLE 1 as a function of B for a
given power preservation criterion. The n = 0 carrier component with magnitude
exp (-B<) was independently evaluated, since the weighted superposition algorithm
excluded such discrete component to avoid the impulse simulation. A dB
transformation of the discrete and continuous spectral magnitudes was also
implemented. '

THE RECTANGLE CONVOLUTION PROGRAM RESULTS

The results of the simulation program just described are presented in this
section. The normalized FM spectral densities for various B-values are shown in
Figures 3(a) to 3(f) with linear scale and in Figures 4(a) to 4(f) in dB scale.
The first set of figures illustrates the variation of the FM spectrum from
rectangular to gaussian shape as B8 increases, while the second set serves to
discriminate the spectral tail magnitudes obtained. The rms phase deviation. is
given by B radians, and the carrier component magnitude of - B2 logqge dB is
indicated in all plots.

The number of spectral convolutions (series terms) employed was selected
according to TABLE 1 to provide a 99 percent power preservation in the
FM spectrum. A minimum of five convolutions was performed for those cases where
less would have sufficed. The effectiveness of the procedure was also verified
by performing more and less convolutions than required, and verifying that no
significant differences were obtained with the extra convolutions.

Some typical verification results are presented in Figures 5(a) and 5(b),
where the nominal number of convolutions required is indicated in the legend. A
smaller number of convolutions proves to be insufficient for the nominal
reproduction, whereas a larger' number matches the nominal reproduction in the
significant spectral region. The differential effects of the extra convolutions
appear in the spectral tail regions as evidenced by the dB plots of Figures 6(a)
and 6(b).

The interest is to compare the gaussian spectrum approximation to the FM
spectrum obtalned via the spectral convolution series. The baseband phase
modulating spectrum has the normalized form (f) 1/W for |f’§W/2, from which
the rms  bandwidth  follows as Bg= w//T§¥ Hence, the gaussian spectrum
approxlmation has a standard deviaton given by o =§. B =gW/ v12, so that the
gaussian formula (5) becomes

s (6) = = @wyleceeen? | (10)
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