
20181106 NTIA-STANDARDS AND FORMATS

 >>: We're going to, um, move on to thinking

about standards and formats, and unfortunately, of the

three co-chairs there, um, oh, wait, sorry, we have a

quick note, as you guys come and setup. So, Bill, you

get the last word on use cases.

 >>: Let me take myself off mute here.

 >>: Great. Thank you.

 >>: Sorry about that. I couldn't make it,

unfortunately. I just really want to highlight again

the need for, um, you know, some positive correlation

between what we get, you know, daily from CVEs against

our products, where CVEs already have it built into it,

really don't want to lose sight of that particular

component. I know it's kind of a mess from a structural

perspective, but getting us to a point where, um, we

almost don't have to worry about what we get for

information, and we can just automatically notify

engineering teams, as well as customers of what's

coming down. I don't think I heard that explicitly

mentioned, but just wanted to get that in there.

 >>: Thank you. It's a great point. All right,

so, we're going to now shift from use cases to standards

and formats. Unfortunately, one of the, um,

co-coordinators of this group, Kent Lanfield, is

feeling a little under the weather, so he's going to

be joining us, um, remotely to talk about one part of

this presentation, but, um, we've got JC and Kate here

and Kent remotely, and, um, so, take it away.

 >>: Oh, mic on. Otherwise, I could project to

the back row, which I can also do. So, standards and

formats working group, um, we have the good luck to,

um, convene around certain pre-existing capabilities

as opposed to having to, you know, pull notions out of

the air of what could be and then figure out how they

would be implemented. So, what we're going to quickly

do is do a summary of our activities, we're going to

do a 5-minute overview of each of the standards that

we've been examining in the working group, and then

point to some of the next steps. So, the goals, right?

Very concrete, very empirical, right? So, what exists

today? Um, looking at how these different solutions

can work together, where they are good, where they have

gaps, and then to document, um, workable and actionable

machine-readable formats, right, because regardless of

which flavor of format you like, having things be

machine-readable and consumable and open and

ingestible by third-party processes, right, that's a

win, you know, whatever format that you're using, and

we want to be very explicit about this is not about pick

a winner, this is not about saying, oh, well, you know,

like the Highlander, there can be only one, and this

is the standard, right, because the developer community

is in a constant state of evolution, asset managers have

use cases.

There are, in this SBoM and software transparency

world, use cases that are actually quite distinct, and

it may be that, you know, one format best serves certain

purposes, and another format best serves other

purposes, so it's not necessarily about closing down,

it's about mapping and understanding the capabilities

that are there and where they overlap and how they

harmonize, and also, to put this in a broader context,

because this isn't just a United States context, right?

There are proposed solutions here, but the global, um,

developer community is actually, it's operating

everywhere. The EU has its own discussions afoot and,

you know, standards, conversations going on, and in

some senses, some different approaches to things. So,

again, we have to map, right? If there are differences

between the way that these discussions are evolving in

the United States and the way they're evolving in the

European Union, we need to understand what those

differences are, so that people can resolve them. Um,

I'm not going to read this aloud, this is our, um,

charter for standards and formats, and, um, again, this

kind of goes to what Art was talking about in terms of

even just locking down on the terminology of, you know,

what do we mean when we say component, um, you can have

that discussion for a long time, but when you have to

actually instantiate it in a format, right, that's when

these things become concrete, and we have the boundary

objects that we can really talk around. With that, so

there are two standards that we have today that we've

been discussing, software ID tags, or SWID, and, um,

the software package data exchange, SPDX, which comes

out of the open source community and is an open source

standard. Um, and so we're going to present and talk

through each of those, um, now. Um, Kate, do you want

to take over from here?

 >>: So, right now, what we're looking at is, you

know, to what extent is what we have with SWID and SPDX

similar or complementary, okay, and, um, are we all

talking the same language? They've both come from very

different points of view and various different use

cases, and there's a lot of things in common, and

there's also subtleties, and trying to figure out,

okay, how to, um, understand are we talking apples to

apples or not is one of the initial tasks we're working

on in the group. Um, and then how can we interact, and

how can we exist with both of them is something else

we're exploring here, and I guess with that, I'll turn

it over to cent, who's hopefully on the microphone now.

 >>: Yeah, can you guys hear me okay?

 >>: We can. Thanks.

 >>: Okay, good. Um, so, next slide. Um, so,

this became an issue, software ID became an issue in

a few different communities, and as such, um, SWID was,

um, the focus initially for, um, the vendor community

to look at some of these areas, license management,

security and configuration management, all specific

use cases that needed to be addressed, and the intent

behind, um, developing SWID was really to try to find

a fundamental piece, um, an ingredients list, so to

speak, as Josh mentioned earlier, that, um, satisfied

the needs of these, um, these communities. Um, next

slide. Um, software identification tag is an ISO

standard, it's a simple XML structure that's used to

define that ingredient set. SWID tag is basically an

XML construct, and final in most cases that describes,

um, the contents of what is in the software package.

It's managed and normally put on the computing device,

on the end point itself, although it's not a hard

requirement, it's used, there's a lot of asset

management aspects that need to have it local on device.

It does support both commercial and open source,

although it doesn't support, um, open source to the

level that SPDX does today, and that's one of the things

we're sort of investigating, where the win-win is for

both. SWID can be used for software tamper detection

and protection. The hatch information that's

contained allows for validating the contents on disk

before you start to execute them.

Digital signatures are used for authoritative

data, in other words, created by the vendors, and, you

know, one of the big reasons this was done was to try

to address the software discovery issue on our

networks, trying to figure out what's on our networks

is, quite often, an archeological dig. Next slide.

So, current uses for SWID, um, tag data, package

verification, um, and for software inventory itself,

reporting what's on the machine itself, and, um,

there's different types of SWID tags that, um, I didn't

really go into here due to time restrictions, but there

are primary and patch tags, corpus tags, as well as,

um, supplemental tags, um, that allow, um, different

uses of the, of SWID. Um, software integrity,

validating patches, and software being installed, um,

for the purpose of SBoM today, um, as well as, um,

incorporating it into digital policy definition

mechanisms on the end points themselves. Next slide.

So, um, SWID tags, um, identify the software release,

identifies the organization that created it, the

release and the actual tag producer themselves, in some

cases, if it's not, um, the vendor, um, provides a means

to link, different types of information for, um,

license, download locations, um, issues about, um,

component support, those types of things. It supports

software dependencies for things that require other

packages, parts, or pieces, and it has, um, it describes

the names and locations of files, where they're at, um,

versions, cryptographic hashes, so that you can use it

in others of the like. Sorry, next slide. Um, should

be on the example SWID tag, I hope.

 >>: Yes.

 >>: This is, um, sort of a sample of a SWID tag

file, and as you can see, it is a simple XML file, it

does, um, allow for, um, capabilities to identify who,

um, is the creator of the file, what the corporation

is, what the product itself is, where it's at and the

like, types of things that you would expect in trying

to identify a SWID tag, or location. Sorry. Next

slide. So, um, normally, in the past, SWID's been used

by the vendor community, SPDX used by the open source

community. Both of them are, um, very important here,

because the vendor community is incorporating a lot of

open source into the products that they sell, hence the

needs. Um, vendors produce SWID tags normally as, um,

at build time, so in other words, this is integrated

into an automated process, in the build software, so

when something is created either for internal testing

purposes or for release candidate or for actual

production, um, SWID tags are created to indicate, um,

what those are. Um, this is, when vendors produce

them, they should be digitally signing them, and when

they do, that creates a starting point for, um, a chain

of trust, at least from that software and the different

pieces and parts that are there. Um, these are

different, um, from the standpoint of how vendors, um,

use them. One of the things that we've found using SWID

tags is that, um, support costs are reduced, because

the support folks can ask the customer to run a little,

tiny program that displays the SWID information, um,

as to the release information, patches, hot fixes, all

that stuff, and it will exactly show them what they

have, so there's no digging around to figure out what's

on the disk, we know immediately.

 >>: So, we may, um, we'll post all these slides.

Is there one thing you wanted to grab from the last few

slides here?

 >>: Yeah. Well, the last, well, one of the

slides is sort of messed up, 14, um, hopefully, we can

get that updated, but the key here is that this is a,

um, a very lightweight process, very easy to get through

from, um, incorporating it into, um, our build

processes and from the standpoint of, um, then having

that always there. The slide that was the use in

software life cycle, which will get replaced when we

put it up, that shows the fact that this is really sort

of an as-built kind of environment, the SWID tags match

what is actually put on the device itself, so if you

get an initial installation, you get a SWID tag with

all of the information about that version. If a

product then has a, is later patched, you'd get a new

SWID tag, the old one would be removed, and the new SWID

tag actually has that current information. So, this

is --

 >>: Excellent, and there's also, for those who

are interested in learning more, we'll post these

slides online. Just want to keep an eye on the clock,

but there's also a Mister 8060 that provides a lot more

detail on SWID tags. So, I think we're going to, is

there one last thing, or we can move on? All right,

um, we're going to leave your line open, Kent, for the

discussion, but I just want to sort of show there's the

SWID approach, and then there's, um, software package

data exchange.

 >>: Data exchange, yeah. So, um, software

package data exchange pretty much arose organically,

and it came up from the need of, um, people actually

shipping software, um, in the embedded space initially,

not sure how to communicate the same information and

looking at the same open source packages over and over

again and having no way to communicate with each other,

and, so, this, um, working group formed underneath the

Lennox Foundation about ten years ago now and has been

basically accreting use cases and figuring out a common

language to express these use cases in, and we've had

fairly wide industry participation all the way along,

um, and it's being now adopted into, um, the supply

chains, being specified in some of the contracts that

are going on today. So, it is, um, at the heart of it,

a document, just basically has information about the

document, the packages, and then most of the rest of

it is optional. So, you know how we were talking, we

want to have a basic main minimal viable product? This

does have a minimum viable product state right now and

has a lot of options for expressing things in a common

way, and so we're seeing it being adopted and work from

that perspective. At the heart of it, we just have the

version information, which is effectively what you're

seeing in SWID, as well as you may want to have some

more information about verification and signing and

where you can find things, but you can, if you start

digging into the spec, you'll find a lot more cases of

being able to put relationships into play, being able

to express things, like containers, express things,

like patches, and the different artifacts you do find

in an open source ecosystem. To create it, you need

to do some tooling, you need some meta data in your

sources, and the tool creates a document, and there is,

everything is checksum, so you know if it's changed out

from under you, and this was a requirement that we had

from legal way back when, in the sense that, um, there

was a lot of organic formats that were out there

already, and we had to put the signing in so that people

would know if things had changed.

This came about also because we had to adhere to

the compliance of the open source licenses, and we've

been adding in the security information over time.

Right now, there is open source tooling available to

support it. The SPDX project has its own tool set, but

some open source tools exist for people to basically

generate and consume these documents, and there are

commercial options available. For probably about the

last four years, Windriver has been basically putting

out SPDX documents as their standard build materials

for all their products already, and then BlackDuck is

able to generate SPDX documents now as well, and same

with source ID. So, we're using some of these

commercial tools already. They do have support for

SPDX built in, you have to ask for it sometimes to know

the manic incantations, but it is there, and we are

working with other processes and practices to make sure

that this becomes part of an effective ecosystem. Um,

there's a re-use initiative that's coming out of

Europe, and then the open chain for expressing how to

build trust between partners and then supply chain.

So, these are just a little bit more details on the

document, on the tools that are there. Um, FOSSology

is one I tend to be using, um, and it's able to consume

and produce, the key being able to consume it and

basically accrete information and bring it forwards.

So, that's kind of the background on the SPDX. Anyone

that wants to know more, by all means, reach out to me

at break. Um, and what the group is doing right now

is we're starting to actually do the comparisons and

taking it to the next stage of, okay, are we matching

one for one? If we talk about this, are we seeing the

same things, or are we getting slight different

concepts? Because, um, the SWID approach is being much

more used in the asset management and in the commercial

side, and, so, are we talking the same concepts, or do

we need to basically reconcile, make sure that we can

get things to interact?

 >>: Um, also, from a supply chain perspective,

in terms of the generators of software, um, sometimes,

you can have formats that are overlapping, but, you

know, the market adoption for an open source software

developer to use a kind of software publishing format

may be less, whereas a software publisher may be much

more comfortable adopting the format that works for

asset management, so, you know, depending on who

upstream is generating the information, there can be

more comfort in the open source community, which

comprises about 80 percent of commercial products to

use solutions that are themselves open source, as to,

um, as opposed to adopting kind of proprietary or closed

solutions, whereas in the publishing, software

publishing industry, um, there's a lot of comfort in

the adoption of formats which, um, slide right into kind

of a commercial and proprietary work flow.

 >>: Tell us how you can join.

 >>: Yes.

 >>: And I will say, it's been, um, good to sort

of see this technical deep dive, and I think, um,

there's been an appreciation that, you know, it's not

going to be one standard rule of them all, and now, the

approach is to say how do they fit together, and the

most constructive way to move forward. So, thank you,

and thanks to Kent on the phone. Bruce?

 >>: One of the goals, I'm not clear if it's a,

exactly what kind of goal it is, was that you weren't

going to select one standard. The problem is softwares

consist of many components, and if some of those

components decide to pick one standard, and some

provide, decide to pick the other standard, there's

going to be a problem there, and, um, in the case of

medium size products at Oracle, where I work, we have

over 300 different components in many of the products.

 >>: Only?

(Laughing.)

 >>: I'm just talking about, sure, it might be

larger --

 >>: I'm used to seeing thousands.

 >>: Okay, fine, thousands, but the problem is

the same, whether it's hundreds or thousands.

 >>: Right.

 >>: Which is if, you know, half these guys, or

some percentage of these guys, large percentage of

these guys use SWID, and the other, um, large percentage

use SPDX, how does that get, you know, coordinated?

 >>: So, this is part of the reason we're trying

to map and understand how can we do translations, how

can we get the information into your own databases so

you can be tracking things.

 >>: Okay. I didn't see that as a bullet.

 >>: Actually, the last, the slide with the

mapping, right, that's the kind of empirical evidence

that that is a goal and that mapping is being done. Um,

on a practical basis, facts on the ground, um, there's

a global community of open source software developers

that is never going to be forced to use a proprietary

standard. So, we live in a world where if someone could

wave a magic wand and everyone could use something

perfect that was only one thing, that might be good,

but we have to maintain openness in the system, and,

so, I think this is a recognition of that.

 >>: Yeah. I think that is the big step forward

for the group, is to understand how they play together,

and this is, um, the, you know, basically saying where

do they, where are they similar, where is there overlap,

and where is there complementarity from an

organizational perspective, and trying to tackle

exactly the problem you're focusing on. Kent, do you

have a comment on this?

 >>: No, I think we're, you know, we're really

on the same page, trying to find that win-win where it

makes the most sense. From the standpoint of one, you

know, I would love to have one standard rule of the

world, not in this case, but in every case. The reality

is we have lots and lots of standards that we have to

deal with, and some of them are complementary, and

that's what we're sort of shooting for, and some of them

are absolutely distinct and different. That's not

what we want to achieve. So, from this perspective,

it's really a matter of trying to see how we can

harmonize both communities so that we can get the best,

um, the best result. It's, um, open software, um, is

a different beast, so to speak, than proprietary

software, transparency for open source is much easier

to deal with, although it is still very complicated,

but it's much easier to deal with than the vendor

products that don't allow you to access the source.

Um, so, there's different issues here that have to be

addressed. While we want to try to harmonize as much

as possible, we're not, there is no mandate for us to

come up with a one size fits all.

 >>: So, I've got Duncan, and then Omar, and then

back to Bruce, and then we'll move on for the moment.

 >>: Hi. So, I don't know as much in this as I

wish I did, but I at least get the impression that both

the two things being looked at, the SWID and SPDX, are

more the format of the ingredient, not the format of

the list of ingredients, and I know Olas sort of got

into this issue and created something called Cyclone

DX, which was sort of the how you, it has to be based

on SPDX, but it's sort of here's the format for the list

of ingredients, not just the format of the ingredients.

Am I getting that correct?

 >>: SPDX is the format of the list.

 >>: Okay, the list as well?

 >>: Yeah.

 >>: SPDX, um, has two key elements right now.

We've got a license list, where we standardized on the

set about 300 licenses right now that are commonly

used, and, um, that's picked up a lot of adoption

already. The SPDX documents are sort of the next stage

that's being focused on, which is the list of all the

ingredients and how you can map relationships between

documents and between packages and how can you pull all

the pieces together to put out a dystroph, for instance,

and, you know, you don't want to necessarily have all

of that necessarily in one big document, but you want

to have relationships between these documents and so

forth.

 >>: Okay, so SPDX is definitely a list. Is the

other one, SWID, a list or an ingredient?

 >>: Um--

 >>: It has the capability for both.

 >>: Thank you.

 >>: Yeah, one comment, just to probably capture

it, one of the challenges that I'm seeing, regardless

of the standard, because we can translate, is the

governance in pulling the information within the fields

of the standard, specifically the naming and the

versions, and in the commercial products, you know, of

course, you know, I'm in the thousands, but, um, we

consume a lot of open source, and we contribute to a

lot of open source, so depending on who's actually

contributing, you may actually have, even if you have

one single standard, you may have different ways to

represent that product, that version, and everything,

and that's the biggest thing that actually will hinder

the progress here. Even the commercial products that

you listed there, I consume them all, you know, I get

different outputs.

 >>: Yeah. Um, that's part of the reason it's

important to define what are valid fields and what

formats are valid fields, and we've been focusing on

that, I think in both projects, and, so, the definition

and getting more use case, getting more examples,

getting more precedent established for people to fill

these things out effectively is a goal eventually.

 >>: Naming is a known hard problem, and

fortunately, we have a lot of folks who spent some time

thinking about it. Dave Waltermier has been

participating in this discussion very constructively.

Um, Bruce?

 >>: Yeah, I just want to clarify my statement.

It wasn't whether I care which one is selected, I expect

both will be, the question is if I have a document or

a piece of software that's got both inside of it, how

does that get, how does that work out? And as far as

I know, neither SWID nor SPDX explain how the, if the

other one's in there, how you get to it.

 >>: Um, SPDX will be referencing as an external

reference ID to the SWID ID, and that's what we're

working on focusing right now, and we can go to CVEs,

you know, CWEs, etc. We're adding more security

information into SPDX, but we can go to SWIDs directly

right now, if we want to, and I suspect they're looking

at it from the other side now too.

 >>: I'm going to encourage folks who want to

dive in, um, the working group information is back up

here. We want to move on and make sure we got time,

but Josh, quick last word.

 >>: When we did our harmonization across

groups, one potential useful way to look at this is you

can do the am I affected and where am I affected with

a two-column field in graph. If you were to draw all

the use cases we can do and want to do, some of them

get unlocked more or less as we standardize better or

worse, so it's not a this is a deal-breaker, it's which,

in fact, we could even make a table of which of these

use cases are possible without a standard, with CPE,

with SPDX, you know, with a harmonized

cross-referential, I just don't want us to think it's

a binary thing.

 >>: All right. Um, thank you. We will, um,

table that for the moment. Of course, there's plenty

of time to come back to that the rest of the day.

This is being provided in a rough-draft format. Communication Access

Realtime Translation(CART) is provided in order to facilitate
communication accessibility and may not be a totally verbatim record

of the proceedings.

