POTENTIAL INTERFERENCE FROM BROADBAND OVER POWER LINE (BPL) SYSTEMS TO FEDERAL GOVERNMENT RADIOCOMMUNICATION SYSTEMS AT 1.7-80 MHz

Phase 2 Study

VOLUME II

U.S. DEPARTMENT OF COMMERCE • National Telecommunications and Information Administration

POTENTIAL INTERFERENCE FROM BROADBAND OVER POWER LINE (BPL) SYSTEMS TO FEDERAL GOVERNMENT RADIOCOMMUNICATION SYSTEMS AT 1.7-80 MHz

Phase 2 Study

VOLUME II

James C. Richards Jonathan V. Williams

U.S. Department of Commerce Carlos M. Gutierrez, Secretary

John M. R. Kneuer, Assistant Secretary for Communications and Information

VOLUME II
 TABLE OF CONTENTS

TECHNICAL APPENDICES

TABLE OF CONTENTS iii
GLOSSARY iv
APPENDIX A ANTENNA MEASUREMENT HEIGHT
A. 1 Introduction A-1
A. 2 Height of Peak Field Strength A-1
A. 3 Compliance Measurement Height for Operation Between 1.7 - 30 MHz A-10
A. 4 Compliance Measurement Height for Operation at 30 MHz and Above A-53
A. 5 Height Correction Factor Above 30 MHz A-62
APPENDIX B MEASUREMENT DISTANCE ALONG THE POWER LINE
B. 1 Introduction B-1
B. 2 Simulation Results B-1
APPENDIX C MEASUREMENT DISTANCE EXTRAPOLATION
C. 1 Introduction C-1
C. 2 BPL Field Strength Simulation Results C-1
C.2.1 Extrapolated Field Strength Levels Meeting the Part 15 Limits C-1
C.2.2 Simulation Results C-2
APPENDIX D SPECIAL PROTECTION PROVISIONS
D. 1 Excluded Frequency Bands D-1
D. 2 Exclusion Zones D-2
D.2.1 Coast Stations D-2
D.2.2 Radioastronomy Observatories D-5
D. 3 Consultation Areas D-7

GLOSSARY

AWG	American Wire Gauge
BPL	Broadband over Power Line(s)
BW	Bandwidth
CISPR	International Special Committee on Radio Interference
CONUS	Continental United States
COTHEN	Customs Over The Horizon Enforcement Network
dB	Decibel
dBi	Decibel referenced to an isotropic radiator
dBm	Decibel referenced to 1 milliwatt
dB $\mu \mathrm{V}$	Decibel referenced to 1 microvolt
dBW	Decibels referenced to 1 Watt
E	Electric Field Strength
EMC	Electromagnetic Compatibility
EUT	Equipment Under Test
FCC	Federal Communications Commission
G	Gain
GHz	Gigahertz
H	Magnetic Field Strength
HF	High Frequency
Hz	Hertz
I	Interference Power
ICAO	International Civil Aviation Organization
IRAC	Interdepartment Radio Advisory Committee
ITM	Irregular Terrain Model
ITS	Institute for Telecommunication Sciences
ITU	International Telecommunication Union
ITU-R	International Telecommunication Union Radiocommunication Sector
kHz	Kilohertz
km	Kilometer
LV	Low Voltage
m	Meter
MHz	Megahertz
mm	millimeter
mS	Siemens/meter
ms	Millisecond
MV	Medium Voltage
N	Noise Power
NEC	Numerical Electromagnetic Code
NOI	Notice of Inquiry
NPRM	Notice of Proposed Rulemaking
NTIA	National Telecommunications and Information Administration
OR	Off-Route

OTH	Over the Horizon
PFD	Power Flux Density
PLC	Power Line Communications
PLT	Power Line Telecommunications
R	Route
RF	Radio Frequency
RMS	Root Mean Square
RSMS	Radio Spectrum Measurement System
S	Signal Power
SNR	Signal-to-Noise Ratio
SSB	Single Sideband
SSN	Smoothed Sunspot Number
URD	Underground Residential Distribution
US\&P	United States and Possessions
UTC	Universal Coordinated Time
VHF	Very High Frequency
VLA	Very Large Array
VOA	Voice of America
VOACAP	Voice of America Coverage Analysis Program
W	Watt
μA	Microampere
μ V	Microvolt

APPENDIX A
 MEASUREMENT ANTENNA HEIGHT

A. 1 INTRODUCTION

Section A. 2 describes NTIA's Numerical Electromagnetics Code (NEC) simulation results showing the height where the peak field strength is expected in close proximity to an Access Broadband over Power Line (BPL) system operating on overhead Medium Voltage (MV) power lines. Section A. 3 shows the effectiveness of the 1 meter measurement height in estimating the peak field strength at frequencies between 1.7 and 30 MHz . Section A. 4 provides results from simulations performed in the $30-50 \mathrm{MHz}$ range, using the 1 to 4 meter measurement height range defined in the compliance measurement guidelines for Access BPL systems operating above 30 MHz . In Section A.5, the optional $5-\mathrm{dB}$ height correction factor for measurements at a 1 meter height is compared to the use of the 1 to 4 meter measurement height for the various power line simulations at frequencies above 30 MHz .

A. 2 HEIGHT OF PEAK FIELD STRENGTH

Figures A-1 through A-18 show the heights where the peak electric field strength occurred over the frequency range of 2 to 50 MHz for the NEC power line models described in Section 2.2. The height of the modeled power lines was 12 meters. These results assume field strength values are calculated at a horizontal distance of 10 meters.

Figure A-1: Height corresponding to peak electric field strength as a function of frequency

Figure A-2: Height corresponding to peak electric field strength as a function of frequency

Figure A-3: Height corresponding to peak electric field strength as a function of frequency

Figure A-4: Height corresponding to peak electric field strength as a function of frequency

Figure A-5: Height corresponding to peak electric field strength as a function of frequency

Figure A-6: Height corresponding to peak electric field strength as a function of frequency

Figure A-7: Height corresponding to peak electric field strength as a function of frequency

Figure A-8: Height corresponding to peak electric field strength as a function of frequency

Figure A-9: Height corresponding to peak electric field strength as a function of frequency

Figure A-10: Height corresponding to peak electric field strength as a function of frequency

Figure A-11: Height corresponding to peak electric field strength as a function of frequency

Figure A-12: Height corresponding to peak electric field strength as a function of frequency

Figure A-13: Height corresponding to peak electric field strength as a function of frequency

Figure A-14: Height corresponding to peak electric field strength as a function of frequency

Figure A-15: Height corresponding to peak electric field strength as a function of frequency

Figure A-16: Height corresponding to peak electric field strength as a function of frequency

Figure A-17: Height corresponding to peak electric field strength as a function of frequency

Figure A-18: Height corresponding to peak electric field strength as a function of frequency

A. 3 COMPLIANCE MEASUREMENT HEIGHT FOR OPERATION BETWEEN 1.7-30 MHz

The Federal Communication Commission (Commission or FCC) Part 15 measurement guidelines specify that below 30 MHz , measurements are to be made with the antenna positioned at a height of 1 meter. In Section A.2, the height corresponding to the peak field strength was often located well above the 1 meter measurement height. The following plots show a comparison between the peak field strength determined from the measurement guidelines and the $80^{\text {th }}$ percentile of peak electric field strength at any height along the length of the power line. The $80^{\text {th }}$ percentile values eliminate the localized peaks that are unlikely to be encountered by a radio receiver randomly located in close proximity to an Access BPL power line. ${ }^{1}$ The plots are shown for a number of NEC power line models at frequencies from 2 to 28 MHz .

[^0]
2 MHz Plots

Figure A-19: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-20: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-21: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-22: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-23: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-24: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

4 MHz Plots

Figure A-25: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-26: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-27: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-28: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-29: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-30: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

6 MHz Plots

Figure A-31: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-32: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-33: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-34: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-35: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-36: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

8 MHz Plots

Figure A-37: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-38: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-39: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-40: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-41: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-42: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

$\underline{10 \mathrm{MHz} \text { Plots }}$

Figure A-43: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-44: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-45: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-46: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-47: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-48: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

12 MHz Plots

Figure A-49: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-50: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-51: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-52: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-53: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-54: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

14 MHz Plots

Figure A-55: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-56: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-57: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-58: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-59: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-60: 80 $^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-61: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-62: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-63: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-64: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-65: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-66: 80 $^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

18 MHz Plots

Figure A-67: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-68: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-69: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-70: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-71: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-72: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

20 MHz Plots

Figure A-73: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-74: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-75: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-76: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-77: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-78: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

22 MHz Plots

Figure A-79: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-80: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-81: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-82: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-83: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-84: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

24 MHz Plots

Figure A-85: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-86: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-87: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-88: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-89: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-90: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-91: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-92: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-93: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-94: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-95: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-96: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-97: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-98: 80 ${ }^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-99: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-100: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-101: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

Figure A-102: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at a 1 meter measurement height

A. 4 COMPLIANCE MEASUREMENT HEIGHT FOR OPERATION AT 30 MHz AND ABOVE

The Commission's Part 15 measurement guidelines specify that at or above 30 MHz , measurements are to be made with the antenna positioned at a height ranging from 1 to 4 meters. The electric field strength should be measured in both the horizontal and vertical planes. The following plots show a comparison between the peak field strength determined from applying the measurement guidelines to the power line simulations to compute the $80^{\text {th }}$ percentile of peak field strength at any height along the length of the power line. The rationale for use of $80^{\text {th }}$ percentile values was previously addressed in Section A.3. The plots are shown for a number of NEC power line models at the frequencies of 30,40 and 50 MHz .
$\underline{30 \mathrm{MHz} \text { Plots }}$

Figure A-103: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

Figure A-104: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

Figure A-105: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

Figure A-106: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

Figure A-107: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

Figure A-108: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

40 MHz Plots

Figure A-109: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

Figure A-110: $8 \mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

Figure A-111: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

Figure A-112: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

Figure A-113: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

Figure A-114: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

50 MHz Plots

Figure A-115: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

Figure A-116: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

Figure A-117: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

Figure A-118: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

Figure A-119: $80^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

Figure A-120: $\mathbf{8 0}^{\text {th }}$ percentile of peak electric field strength along the power line relative to the peak electric field strength at the $\mathbf{1}$ to $\mathbf{4}$ meter measurement height

A. 5 HEIGHT CORRECTION FACTOR ABOVE 30 MHz

Above 30 MHz , the option to perform compliance measurements at a 1 meter measurement height coupled with a 5 dB height correction factor provides a much simpler measurement approach than to perform measurements over a 1 to 4 meter range of measurement antenna heights. Figures A-121 through A-138 show the comparison between use of a 1 to 4 meter measurement height and the optional use of a 1 meter measurement height.

The results shown in these figures indicate that use of the optional 1 meter measurement height tends to underestimate the peak electric field strength by 2.5 to 7.5 dB . Thus, the use of the optional 1 meter measurement height coupled with a 5 dB correction factor will, in general, provide similar results to measurements performed using a 1 to 4 meter measurement height.

$\underline{30 \mathrm{MHz} \text { Plots }}$

A-121: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

A-122: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

A-123: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

A-124: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

A-125: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

A-126: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

A-127: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

A-128: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

A-129: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

A-130: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

A-131: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

A-132: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

50 MHz Plots

A-133: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

A-134: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

A-135: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

A-136: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

A-137: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

A-138: Comparison of electric field strength as a function of measurement height, if compliance measurements were performed at heights of 1 meter, or at 1 to 4 meters

APPENDIX B
 MEASUREMENT DISTANCE ALONG THE POWER LINE

B. 1 INTRODUCTION

As noted in the NTIA Phase 1 Study, compliance measurement testing commissioned by BPL equipment vendors and service providers has generally focused on radiated emissions measured on radials from the BPL device under test. However, FCC rules state that Part 15 devices and all attached wiring should be considered when measuring radiated emissions. ${ }^{2}$ The Commission's BPL measurement guidelines specify the locations along the power line away from a BPL device where field strength measurements are to be taken. ${ }^{3}$ This Appendix provides NTIA's results from evaluating the field strength along the length of the power line and comparing this to the field strength levels at the prescribed measurement locations.

B. 2 SIMULATION RESULTS

Figures B-1 through B-84 show the electric field strength level along the power line for a variety of simulated power line configurations, and over the frequency range of 2 to 28 MHz . Each figure includes the Part 15 radiated emissions limit extrapolated to a measurement distance of 10 meters assuming the power line height is 12 meters. ${ }^{4}$ In addition, these figures show the measurement points specified in the measurement guidelines. The peak value of these points was used to scale the signal source level so that the power line model satisfies the Part 15 limit, as extrapolate to the 10 meter measurement distance. Electric field strength values were determined from NEC magnetic field strength simulations of the power line models using the methodology described in Section 2.2.

[^1]
$\underline{2 \mathrm{MHz} \text { Plots }}$

Figure B-1: Vertical electric field strength along power line for tri36 topology

Figure B-2: Vertical electric field strength along power line for tri36n topology

Figure B-3: Vertical electric field strength along power line for tri26n topology

Figure B-4: Vertical electric field strength along power line for ver1n topology

Figure B-5: Vertical electric field strength along power line for ver26n topology

Figure B-6: Vertical electric field strength along power line for ver36n topology

4 MHz Plots

Figure B-7: Vertical electric field strength along power line for tri36 topology

Figure B-8: Vertical electric field strength along power line for tri36n topology

Figure B-9: Vertical electric field strength along power line for tri26n topology

Figure B-10: Vertical electric field strength along power line for ver1n topology

Figure B-11: Vertical electric field strength along power line for ver26n topology

Figure B-12: Vertical electric field strength along power line for ver36n topology

6 MHz Plots

Figure B-13: Vertical electric field strength along power line for tri36 topology

Figure B-14: Vertical electric field strength along power line for tri36n topology

Figure B-15: Vertical electric field strength along power line for tri26n topology

Figure B-16: Vertical electric field strength along power line for ver1n topology

Figure B-17: Vertical electric field strength along power line for ver26n topology

Figure B-18: Vertical electric field strength along power line for ver36n topology

8 MHz Plots

Figure B-19: Vertical electric field strength along power line for tri36 topology

Figure B-20: Vertical electric field strength along power line for tri36n topology

Figure B-21: Vertical electric field strength along power line for tri26n topology

Figure B-22: Vertical electric field strength along power line for ver1n topology

Figure B-23: Vertical electric field strength along power line for ver26n topology

Figure B-24: Vertical electric field strength along power line for ver36n topology

Figure B-25: Vertical electric field strength along power line for tri36 topology

Figure B-26: Vertical electric field strength along power line for tri36n topology

Figure B-27: Vertical electric field strength along power line for tri26n topology

Figure B-28: Vertical electric field strength along power line for ver1n topology

Figure B-29: Vertical electric field strength along power line for ver26n topology

Figure B-30: Vertical electric field strength along power line for ver36n topology

Figure B-31: Vertical electric field strength along power line for tri36 topology

Figure B-32: Vertical electric field strength along power line for tri36n topology

Figure B-33: Vertical electric field strength along power line for tri26n topology

Figure B-34: Vertical electric field strength along power line for ver1n topology

Figure B-35: Vertical electric field strength along power line for ver26n topology

Figure B-36: Vertical electric field strength along power line for ver36n topology

14 MHz Plots

Figure B-37: Vertical electric field strength along power line for tri36 topology

Figure B-38: Vertical electric field strength along power line for tri36n topology

Figure B-39: Vertical electric field strength along power line for tri26n topology

Figure B-40: Vertical electric field strength along power line for ver1n topology

Figure B-41: Vertical electric field strength along power line for ver26n topology

Figure B-42: Vertical electric field strength along power line for ver36n topology

16 MHz Plots

Figure B-43: Vertical electric field strength along power line for tri36 topology

Figure B-44: Vertical electric field strength along power line for tri36n topology

Figure B-45: Vertical electric field strength along power line for tri26n topology

Figure B-46: Vertical electric field strength along power line for ver1n topology

Figure B-47: Vertical electric field strength along power line for ver26n topology

Figure B-48: Vertical electric field strength along power line for ver36n topology

Figure B-49: Vertical electric field strength along power line for tri36 topology

Figure B-50: Vertical electric field strength along power line for tri36n topology

Figure B-51: Vertical electric field strength along power line for tri26n topology

Figure B-52: Vertical electric field strength along power line for ver1n topology

Figure B-53: Vertical electric field strength along power line for ver26n topology

Figure B-54: Vertical electric field strength along power line for ver3n topology

Figure B-55: Vertical electric field strength along power line for tri36 topology

Figure B-56: Vertical electric field strength along power line for tri36n topology

Figure B-57: Vertical electric field strength along power line for tri26n topology

Figure B-58: Vertical electric field strength along power line for ver1n topology

Figure B-59: Vertical electric field strength along power line for ver26n topology

Figure B-60: Vertical electric field strength along power line for ver36n topology

Figure B-61: Vertical electric field strength along power line for tri36 topology

Figure B-62: Vertical electric field strength along power line for tri36n topology

Figure B-63: Vertical electric field strength along power line for tri26n topology

Figure B-64: Vertical electric field strength along power line for ver1n topology

Figure B-65: Vertical electric field strength along power line for ver26n topology

Figure B-66: Vertical electric field strength along power line for ver36n topology

$\underline{24 \mathrm{MHz} \text { Plots }}$

Figure B-67: Vertical electric field strength along power line for tri36 topology

Figure B-68: Vertical electric field strength along power line for tri36n topology

Figure B-69: Vertical electric field strength along power line for tri26n topology

Figure B-70: Vertical electric field strength along power line for ver1n topology

Figure B-71: Vertical electric field strength along power line for ver26n topology

Figure B-72: Vertical electric field strength along power line for ver36n topology

Figure B-73: Vertical electric field strength along power line for tri36 topology

Figure B-74: Vertical electric field strength along power line for tri36n topology

Figure B-75: Vertical electric field strength along power line for tri26n topology

Figure B-76: Vertical electric field strength along power line for ver1n topology

Figure B-77: Vertical electric field strength along power line for ver26n topology

Figure B-78: Vertical electric field strength along power line for ver36n topology

Figure B-79: Vertical electric field strength along power line for tri36 topology

Figure B-80: Vertical electric field strength along power line for tri36n topology

Figure B-81: Vertical electric field strength along power line for tri26 topology

Figure B-82: Vertical electric field strength along power line for ver1n topology

Figure B-83: Vertical electric field strength along power line for ver26n topology

Figure B-84: Vertical electric field strength along power line for ver36n topology

APPENDIX C MEASUREMENT DISTANCE EXTRAPOLATION

C. 1 INTRODUCTION

The distance extrapolation calculation based on use of the slant path distance from the BPL device and power lines under test and the measurement antenna was discussed in Section 2.5 of the report. Some of the resulting plots from NTIA's NEC power line model simulations were reported in that section. The remaining plots are included in this appendix.

C. 2 BPL FIELD STRENGTH SIMULATION RESULTS

C.2.1 Extrapolated Field Strength Levels Meeting the Part 15 Limits

Figure C-1 shows the extrapolated electric field strength levels that satisfy the Part 15 limits using slant range distance extrapolation, assuming a power line height of 12 meters. The simulated measurement antenna height is assumed to be 1 meter.

Figure C. 1 - Extrapolated field strength levels meeting Part 15 emissions limits based on slant-range distance to the BPL device under test

C.2.2 Simulation Results

Figures C-2 through C-15 shows the simulated electric field strength moving away from the power line for a number of power line structures that were previously defined in Section 2.2 of the BPL Phase 2 Study. The extrapolated field strength levels meeting the Part 15 emissions limit below 30 MHz are displayed on each figure for comparison. The simulations determined the vertical electric field strength from the horizontal magnetic field strength using the methodology for compliance testing in the Part 15 rules for Access BPL and assuming the electric field strength is related to the magnetic field strength by $\eta=377$ ohms (Ω). The peak field strength value was chosen from among the values calculated at points along the line, as defined in the measurement guidelines, at a distance of 10 meters away from the line. The plots of field strength relative to distance are taken from this corresponding location for each case.

Figure C-2: Electric field strength compared to emissions limit based on slant-range extrapolation for various power line models - 2 MHz

Figure C-3: Electric field strength compared to emissions limit based on slant-range extrapolation for various power line models - 4 MHz

Figure C-4: Electric field strength compared to emissions limit based on slant-range extrapolation for various power line models - 6 MHz

Figure C-5: Electric field strength compared to emissions limit based on slant-range extrapolation for various power line models - 8 MHz

Figure C-6: Electric field strength compared to emissions limit based on slant-range extrapolation for various power line models - 10 MHz

Figure C-7: Electric field strength compared to emissions limit based on slant-range extrapolation for various power line models - 12 MHz

Figure C-8: Electric field strength compared to emissions limit based on slant-range extrapolation for various power line models - 14 MHz

Figure C-9: Electric field strength compared to emissions limit based on slant-range extrapolation for various power line models - 16 MHz

Figure C-10: Electric field strength compared to emissions limit based on slant-range extrapolation for various power line models - 18 MHz

Figure C-11: Electric field strength compared to emissions limit based on slant-range extrapolation for various power line models - 20 MHz

Figure C-12: Electric field strength compared to emissions limit based on slant-range extrapolation for various power line models - 22 MHz

Figure C-13: Electric field strength compared to emissions limit based on slant-range extrapolation for various power line models - 24 MHz

Figure C-14: Electric field strength compared to emissions limit based on slant-range extrapolation for various power line models - 26 MHz

Figure C-15: Electric field strength compared to emissions limit based on slant-range extrapolation for various power line models - 28 MHz

APPENDIX D SPECIAL PROTECTION PROVISIONS

D. 1 EXCLUDED FREQUENCY BANDS

As adopted in the BPL Report and Order, Access BPL emissions from overhead MV power lines are excluded from aeronautical (R) mobile allocations in the $1.7-30$ MHz frequency range and the $74.8-75.2 \mathrm{MHz}$ aeronautical radionavigation band, as delineated in Table D-1. Otherwise, with mature deployments of BPL devices: (1) reception of aeronautical safety communications by aeronautical (land or "base") stations would be endangered; (2) reception of aeronautical safety communications by aircraft would be endangered; and (3) at some aeronautical station or aircraft locations, emissions from In-House BPL devices at these frequencies will increase receiver noise levels such that additional interfering signals from Access BPL devices cannot be risked. This exclusion amounts to less than 2.18 percent of national spectrum resource between 1.7 MHz and 80 MHz .

Table D-1: Bands in Which Access BPL Emissions Are Prohibited

Frequency Band	Total Spectrum (kHz)
$2,850-3,025 \mathrm{kHz}$	175
$3,400-3,500 \mathrm{kHz}$	100
$4,650-4,700 \mathrm{kHz}$	50
$5,450-5,680 \mathrm{kHz}$	230
$6,525-6,685 \mathrm{kHz}$	160
$8,815-8,965 \mathrm{kHz}$	150
$10,005-10,100 \mathrm{kHz}$	95
$11,275-11,400 \mathrm{kHz}$	100
$13,260-13,360 \mathrm{kHz}$	100
$17,900-17,970 \mathrm{kHz}$	70
$21,924-22,000 \mathrm{kHz}$	76
$74.8-75.2 \mathrm{MHz}$	400
TOTAL BANDWIDTH	1,706
U.S. AREA FACTOR	1.0
PORTION OF NATIONAL SPECTRUM	$<2.18 \%$ (area factor x bandwidth factor)
RESOURCE AT 1.7 - 80 MHz	

D. 2 EXCLUSION ZONES

D.2.1 Coast Stations

The analytical results of Section 3.3.1 lead to a requirement to define exclusion zones in the $2,173.5-2,190.5 \mathrm{kHz}$ band within 1 km of coast station facilities, whose coordinates are listed in Tables D-2 and D-3. This amounts to 0.022 percent of the
bandwidth between 1.7 MHz and 80 MHz and less than 0.004 percent of U.S. territorial area, or less than 0.0000008 percent of national spectrum resource between 1.7 MHz and 80 MHz . This special protection requirement will prevent substantial endangerment of distress alerting by ships and aircraft in oceanic areas. In the event that an Access BPL operator plans to deploy numerous Access BPL devices at these frequencies in areas near these exclusion zones, consult with the following point of contact may best ensure that harmful interference is prevented at these facilities:

> Commandant (CG 622)
U.S. Coast Guard $21002^{\text {nd }}$ Street, S.W. Washington, DC 20593-0001
Telephone: (202) 267 - 2860
E-Mail: cgcomms@comdt.uscg.mil
Table D-2: Exclusion zones for U.S. Coast Guard Coast Stations

Locale	Latitude	Longitude
Group Guam	$13^{\circ} 35^{\prime} 23^{\prime \prime} \mathrm{N}$	$144^{\circ} 50^{\prime} 24^{\prime \prime} \mathrm{E}$
GANTSEC	$18^{\circ} 18^{\prime} 00^{\prime \prime} \mathrm{N}$	$65^{\circ} 46^{\prime} 59{ }^{\prime \prime} \mathrm{W}$
Puerto Rico	$18^{\circ} 28^{\prime} 11^{\prime \prime} \mathrm{N}$	$66^{\circ} 07^{\prime} 47^{\prime \prime} \mathrm{W}$
Honolulu	$21^{\circ} 18^{\prime} 21^{\prime \prime} \mathrm{N}$	$157^{\circ} 53^{\prime} 23{ }^{\prime \prime} \mathrm{W}$
Group Key West	$24^{\circ} 33^{\prime} 35^{\prime \prime} \mathrm{N}$	$81^{\circ} 47^{\prime} 59^{\prime \prime} \mathrm{W}$
Trumbo Point CG Base	$24^{\circ} 33^{\prime} 58^{\prime \prime} \mathrm{N}$	$81^{\circ} 47^{\prime} 57^{\prime \prime} \mathrm{W}$
Miami	$25^{\circ} 37^{\prime} 28^{\prime \prime} \mathrm{N}$	$80^{\circ} 23^{\prime} 07^{\prime \prime} \mathrm{W}$
Everglades Park	$25^{\circ} 50^{\prime} 10^{\prime \prime} \mathrm{N}$	$81^{\circ} 23^{\prime} 13^{\prime \prime} \mathrm{W}$
Group Saint Petersburg (Everglades)	$25^{\circ} 51^{\prime} 00^{\prime \prime} \mathrm{N}$	$81^{\circ} 23^{\prime} 24^{\prime \prime} \mathrm{W}$
Station Ft. Lauderdale	$26^{\circ} 05^{\prime} 21^{\prime \prime} \mathrm{N}$	$80^{\circ} 06^{\prime} 40^{\prime \prime} \mathrm{W}$
Station Ft. Myers Beach	$26^{\circ} 27^{\prime} 34^{\prime \prime} \mathrm{N}$	$81^{\circ} 57^{\prime} 15^{\prime \prime} \mathrm{W}$
Group Miami (Ft. Pierce)	$27^{\circ} 27^{\prime} 36^{\prime \prime} \mathrm{N}$	$80^{\circ} 18^{\prime} 36^{\prime \prime} \mathrm{W}$
Station Ft. Pierce	$27^{\circ} 27^{\prime} 50{ }^{\prime \prime} \mathrm{N}$	$80^{\circ} 18^{\prime} 27^{\prime \prime} \mathrm{W}$
Group Corpus Christi	$27^{\circ} 42^{\prime} 01{ }^{\prime \prime} \mathrm{N}$	$97^{\circ} 16^{\prime \prime 111} \mathrm{~W}$
Group Corpus Christi	$27^{\circ} 42^{\prime} 06^{\prime \prime} \mathrm{N}$	$97^{\circ} 16^{\prime \prime} 45^{\prime \prime} \mathrm{W}$
ESD Saint Petersburg	$27^{\circ} 45^{\prime} 21^{\prime \prime} \mathrm{N}$	$82^{\circ} 37^{\prime} 32^{\prime \prime} \mathrm{W}$
Group Saint Petersburg	$27^{\circ} 46^{\prime} 11^{\prime \prime} \mathrm{N}$	$82^{\circ} 37^{\prime} 47^{\prime \prime} \mathrm{W}$
Station Port O'Connor	$28^{\circ} 26^{\prime} 03^{\prime \prime} \mathrm{N}$	$96^{\circ} 25^{\prime} 39^{\prime \prime} \mathrm{W}$
S. Padre Island	$28^{\circ} 26^{\prime} 22^{\prime \prime} \mathrm{N}$	$97^{\circ} 09^{\prime} 56^{\prime \prime} \mathrm{W}$
Freeport	$28^{\circ} 55^{\prime} 59{ }^{\prime \prime} \mathrm{N}$	$95^{\circ} 16^{\prime} 59^{\prime \prime} \mathrm{W}$
Group Galveston (Freeport)	$28^{\circ} 56^{\prime} 24^{\prime \prime} \mathrm{N}$	$95^{\circ} 17^{\prime} 59{ }^{\prime \prime} \mathrm{W}$
Station YANKEETOWN	$29^{\circ} 01^{\prime} 51^{\prime \prime} \mathrm{N}$	$82^{\circ} 43^{\prime} 39{ }^{\prime \prime} \mathrm{W}$
Station Ponce De Leon Inlet	$29^{\circ} 03^{\prime} 50{ }^{\prime \prime} \mathrm{N}$	$81^{\circ} 55^{\prime} 01{ }^{\prime \prime} \mathrm{W}$
Group New Orleans (Grand Isle)	$29^{\circ} 15^{\prime} 53{ }^{\prime \prime} \mathrm{N}$	$89^{\circ} 57^{\prime 2} 26^{\prime \prime} \mathrm{W}$
Galveston	$29^{\circ} 19^{\prime} 59^{\prime \prime} \mathrm{N}$	$94^{\circ} 46^{\prime} 18^{\prime \prime} \mathrm{W}$
Kapalan	$29^{\circ} 20^{\prime} 04^{\prime \prime} \mathrm{N}$	$94^{\circ} 47^{\prime} 17^{\prime \prime} \mathrm{W}$
Sabine	$29^{\circ} 43^{\prime} 42^{\prime \prime} \mathrm{N}$	$93^{\circ} 52^{\prime \prime} 14^{\prime \prime} \mathrm{W}$
New Orleans	$30^{\circ} 01^{\prime} 17^{\prime \prime} \mathrm{N}$	$90^{\circ} 07^{\prime} 24^{\prime \prime} \mathrm{W}$
Panama City	$30^{\circ} 10^{\prime} 01{ }^{\prime \prime} \mathrm{N}$	$85^{\circ} 45^{\prime} 04^{\prime \prime} \mathrm{W}$
Group Mobile (Panama City)	$30^{\circ} 10^{\prime} 12{ }^{\prime \prime} \mathrm{N}$	$85^{\circ} 45^{\prime} 36^{\prime \prime} \mathrm{W}$

Locale	Latitude	Longitude
ANT Jacksonville Beach	$30^{\circ} 17^{\prime} 16^{\prime \prime} \mathrm{N}$	$81^{\circ} 24^{\prime} 10^{\prime \prime} \mathrm{W}$
Pensacola	$30^{\circ} 20^{\prime} 24^{\prime \prime} \mathrm{N}$	$87^{\circ} 18^{\prime} 17^{\prime \prime} \mathrm{W}$
Group Mayport	$30^{\circ} 23^{\prime} 10^{\prime \prime} \mathrm{N}$	$81^{\circ} 26^{\prime} 01^{\prime \prime} \mathrm{W}$
Group Mayport	$30^{\circ} 23^{\prime} 24^{\prime \prime} \mathrm{N}$	$81^{\circ} 25^{\prime} 48^{\prime \prime} \mathrm{W}$
Ft. Morgan	$30^{\circ} 39^{\prime} 07^{\prime \prime} \mathrm{N}$	$88^{\circ} 03^{\prime} 12^{\prime \prime} \mathrm{W}$
Tybee Lighthouse	$32^{\circ} 01^{\prime} 15^{\prime \prime} \mathrm{N}$	$80^{\circ} 50^{\prime} 39^{\prime \prime} \mathrm{W}$
Point Loma Lighthouse	$32^{\circ} 39^{\prime} 56{ }^{\prime \prime} \mathrm{N}$	$117^{\circ} 14^{\prime} 34^{\prime \prime} \mathrm{W}$
Point Loma	$32^{\circ} 40^{\prime} 07^{\prime \prime} \mathrm{N}$	$117^{\circ} 14^{\prime} 14^{\prime \prime} \mathrm{W}$
Activities San Diego	$32^{\circ} 43^{\prime} 59{ }^{\prime \prime} \mathrm{N}$	$117^{\circ} 11^{\prime} 13^{\prime \prime} \mathrm{W}$
Group Charleston (Sullivan's Island)	$32^{\circ} 45^{\prime} 00^{\prime \prime} \mathrm{N}$	$79^{\circ} 49^{\prime} 47^{\prime \prime} \mathrm{W}$
Sullivan's Island Lights	$32^{\circ} 45^{\prime} 02^{\prime \prime} \mathrm{N}$	$79^{\circ} 50^{\prime} 03^{\prime \prime} \mathrm{W}$
Group Charleston	$32^{\circ} 46^{\prime} 25^{\prime \prime} \mathrm{N}$	$79^{\circ} 56^{\prime} 37^{\prime \prime} \mathrm{W}$
Group San Diego	$32^{\circ} 52^{\prime} 48^{\prime \prime} \mathrm{N}$	$118^{\circ} 26^{\prime} 23^{\prime \prime} \mathrm{W}$
San Pedro	$33^{\circ} 45^{\prime} 00^{\prime \prime} \mathrm{N}$	$118^{\circ} 15^{\prime} 58^{\prime \prime} \mathrm{W}$
Group Fort Macon	$33^{\circ} 53^{\prime} 24^{\prime \prime} \mathrm{N}$	$78^{\circ} 01^{\prime} 48^{\prime \prime} \mathrm{W}$
Point Mugu	$33^{\circ} 59^{\prime} 32^{\prime \prime} \mathrm{N}$	$119^{\circ} 07^{\prime} 18^{\prime \prime} \mathrm{W}$
Group LA / Long Beach	$34^{\circ} 07^{\prime} 11^{\prime \prime} \mathrm{N}$	$119^{\circ} 06^{\prime} 35^{\prime \prime} \mathrm{W}$
Channel Island	$34^{\circ} 09^{\prime} 17^{\prime \prime} \mathrm{N}$	$119^{\circ} 13^{\prime} 11^{\prime \prime} \mathrm{W}$
Station Oxnard Channel Island	$34^{\circ} 09^{\prime} 43^{\prime \prime} \mathrm{N}$	$119^{\circ} 13^{\prime} 19^{\prime \prime} \mathrm{W}$
Group Ft. Macon	$34^{\circ} 41^{\prime} 48^{\prime \prime} \mathrm{N}$	$76^{\circ} 40^{\prime} 59^{\prime \prime} \mathrm{W}$
Group Cape Hatteras	$35^{\circ} 13^{\prime} 59^{\prime \prime} \mathrm{N}$	$75^{\circ} 31^{\prime} 59^{\prime \prime} \mathrm{W}$
Group Cape Hatteras	$35^{\circ} 15^{\prime} 35^{\prime \prime} \mathrm{N}$	$75^{\circ} 31^{\prime} 48^{\prime \prime} \mathrm{W}$
Morro Bay (Cambria)	$35^{\circ} 31^{\prime} 21^{\prime \prime} \mathrm{N}$	$121^{\circ} 03^{\prime} 21^{\prime \prime} \mathrm{W}$
San Clemente Island	$32^{\circ} 50^{\prime} 24^{\prime \prime} \mathrm{N}$	$118^{\circ} 23^{\prime} 15^{\prime \prime} \mathrm{W}$
Point Pinos	$36^{\circ} 38^{\prime} 12^{\prime \prime} \mathrm{N}$	$121^{\circ} 56^{\prime} 06^{\prime \prime} \mathrm{W}$
CAMSLANT	$36^{\circ} 43^{\prime} 47^{\prime \prime} \mathrm{N}$	$76^{\circ} 01^{\prime} 11^{\prime \prime} \mathrm{W}$
Group Hampton Roads	$36^{\circ} 53^{\prime} 01^{\prime \prime} \mathrm{N}$	$76^{\circ} 21^{\prime} 10^{\prime \prime} \mathrm{W}$
Point Montara	$37^{\circ} 31^{\prime} 23^{\prime \prime} \mathrm{N}$	$122^{\circ} 30^{\prime} 47^{\prime \prime} \mathrm{W}$
Point Montara Lighthouse	$37^{\circ} 32^{\prime} 09^{\prime \prime} \mathrm{N}$	$122^{\circ} 31^{\prime} 08^{\prime \prime} \mathrm{W}$
Group San Francisco	$37^{\circ} 32^{\prime} 23^{\prime \prime} \mathrm{N}$	$122^{\circ} 31^{\prime} 11^{\prime \prime} \mathrm{W}$
Group San Francisco	$37^{\circ} 48^{\prime} 34^{\prime \prime} \mathrm{N}$	$122^{\circ} 21^{\prime} 55^{\prime \prime} \mathrm{W}$
Point Bonita	$37^{\circ} 49^{\prime} 00^{\prime \prime} \mathrm{N}$	$122^{\circ} 31^{\prime} 41^{\prime \prime} \mathrm{W}$
Group Eastern Shores	$37^{\circ} 55^{\prime} 47^{\prime \prime} \mathrm{N}$	$75^{\circ} 22^{\prime \prime} 47^{\prime \prime} \mathrm{W}$
Group Eastern Shore	$37^{\circ} 55^{\prime} 50{ }^{\prime \prime} \mathrm{N}$	$75^{\circ} 22^{\prime \prime} 58^{\prime \prime} \mathrm{W}$
CAMSPAC	$38^{\circ} 06^{\prime} 00^{\prime \prime} \mathrm{N}$	$122^{\circ} 55^{\prime} 48^{\prime \prime} \mathrm{W}$
Point Arena Lighthouse	$38^{\circ} 57^{\prime} 18^{\prime \prime} \mathrm{N}$	$124^{\circ} 44^{\prime} 28^{\prime \prime} \mathrm{W}$
Point Arena	$38^{\circ} 57^{\prime} 36^{\prime \prime} \mathrm{N}$	$123^{\circ} 44^{\prime} 23^{\prime \prime} \mathrm{W}$
Group Atlantic City	$39^{\circ} 20^{\prime} 59^{\prime \prime} \mathrm{N}$	$74^{\circ} 27^{\prime} 42^{\prime \prime} \mathrm{W}$
Activities New York	$40^{\circ} 36^{\prime} 06^{\prime \prime} \mathrm{N}$	$74^{\circ} 03^{\prime} 36^{\prime \prime} \mathrm{W}$
Activities New York	$40^{\circ} 37^{\prime} 11^{\prime \prime} \mathrm{N}$	$74^{\circ} 04^{\prime \prime} 11^{\prime \prime} \mathrm{W}$
ESD Moriches Hut	$40^{\circ} 47^{\prime \prime} 19^{\prime \prime} \mathrm{N}$	$72^{\circ} 44^{\prime \prime} 53^{\prime \prime} \mathrm{W}$
Group Moriches	$40^{\circ} 47^{\prime} 23^{\prime \prime} \mathrm{N}$	$72^{\circ} 45^{\prime} 00^{\prime \prime} \mathrm{W}$
Group Humboldt Bay	$40^{\circ} 58^{\prime \prime} 41^{\prime \prime} \mathrm{N}$	$124^{\circ} 06^{\prime} 31^{\prime \prime} \mathrm{W}$
Group Humboldt Bay	$40^{\circ} 58^{\prime \prime} 47^{\prime \prime} \mathrm{N}$	$124^{\circ} 06^{\prime} 35^{\prime \prime} \mathrm{W}$
Trinidad Head	$41^{\circ} 03^{\prime} 15^{\prime \prime} \mathrm{N}$	$124^{\circ} 09^{\prime} 02^{\prime \prime} \mathrm{W}$
Group Long Island Sound	$41^{\circ} 16^{\prime} 12^{\prime \prime} \mathrm{N}$	$72^{\circ} 54^{\prime} 00^{\prime \prime} \mathrm{W}$
Station New Haven	$41^{\circ} 16^{\prime} 12^{\prime \prime} \mathrm{N}$	$72^{\circ} 54^{\prime} 06^{\prime \prime} \mathrm{W}$

Locale	Latitude	Longitude
Station Brant Point	$41^{\circ} 17^{\prime} 21^{\prime \prime} \mathrm{N}$	$70^{\circ} 05^{\prime} 31^{\prime \prime} \mathrm{W}$
Group Woods Hole	$41^{\circ} 17^{\prime} 23^{\prime \prime} \mathrm{N}$	$70^{\circ} 04^{\prime} 47^{\prime \prime} \mathrm{W}$
Station Castle Hill	$41^{\circ} 27^{\prime} 46^{\prime \prime} \mathrm{N}$	$71^{\circ} 21^{\prime} 42^{\prime \prime} \mathrm{W}$
Group Woods Hole	$41^{\circ} 30^{\prime} 30^{\prime \prime} \mathrm{N}$	$70^{\circ} 41^{\prime} 42^{\prime \prime} \mathrm{W}$
Boston Area	$41^{\circ} 40^{\prime} 12^{\prime \prime} \mathrm{N}$	$70^{\circ} 31^{\prime} 48^{\prime \prime} \mathrm{W}$
Station Provincetown	$42^{\circ} 01^{\prime} 48^{\prime \prime} \mathrm{N}$	$70^{\circ} 12^{\prime} 42^{\prime \prime} \mathrm{W}$
Eastern Point	$42^{\circ} 36^{\prime} 24^{\prime \prime} \mathrm{N}$	$70^{\circ} 39^{\prime} 26^{\prime \prime} \mathrm{W}$
Cape Blanco	$42^{\circ} 50^{\prime} 16^{\prime \prime} \mathrm{N}$	$124^{\circ} 33^{\prime} 52^{\prime \prime} \mathrm{W}$
Group North Bend	$43^{\circ} 24^{\prime} 16^{\prime \prime} \mathrm{N}$	$124^{\circ} 13^{\prime} 22^{\prime \prime} \mathrm{W}$
Group North Bend	$43^{\circ} 24^{\prime} 35^{\prime \prime} \mathrm{N}$	$124^{\circ} 14^{\prime} 23^{\prime \prime} \mathrm{W}$
Cape Elizabeth	$43^{\circ} 33^{\prime} 28^{\prime \prime} \mathrm{N}$	$70^{\circ} 12^{\prime} 00^{\prime \prime} \mathrm{W}$
Group South Portland	$43^{\circ} 38^{\prime} 24^{\prime \prime} \mathrm{N}$	$70^{\circ} 15^{\prime} 00^{\prime \prime} \mathrm{W}$
Group South Portland	$43^{\circ} 38^{\prime} 45^{\prime \prime} \mathrm{N}$	$70^{\circ} 14^{\prime} 51^{\prime \prime} \mathrm{W}$
Group SW Harbor	$44^{\circ} 16^{\prime} 19^{\prime \prime} \mathrm{N}$	$68^{\circ} 18^{\prime} 27^{\prime \prime} \mathrm{W}$
Group Southwest Harbor	$44^{\circ} 16^{\prime} 48^{\prime \prime} \mathrm{N}$	$68^{\circ} 18^{\prime} 36^{\prime \prime} \mathrm{W}$
Fort Stevens, Oregon	$46^{\circ} 09^{\prime} 14^{\prime \prime} \mathrm{N}$	$123^{\circ} 53^{\prime} 07^{\prime \prime} \mathrm{W}$
Group Astoria	$46^{\circ} 09^{\prime} 29^{\prime \prime} \mathrm{N}$	$123^{\circ} 31^{\prime} 48^{\prime \prime} \mathrm{W}$
Group Astoria	$46^{\circ} 09^{\prime} 35^{\prime \prime} \mathrm{N}$	$123^{\circ} 53^{\prime} 24^{\prime \prime} \mathrm{W}$
La Push	$47^{\circ} 49^{\prime} 00^{\prime \prime} \mathrm{N}$	$124^{\circ} 37^{\prime} 59^{\prime \prime} \mathrm{W}$
Station Quillayute River	$47^{\circ} 54^{\prime} 49^{\prime \prime} \mathrm{N}$	$124^{\circ} 38^{\prime} 01^{\prime \prime} \mathrm{W}$
Port Angeles	$48^{\circ} 07^{\prime} 59^{\prime \prime} \mathrm{N}$	$123^{\circ} 25^{\prime} 59^{\prime \prime} \mathrm{W}$
Group Port Angeles	$48^{\circ} 08^{\prime} 24^{\prime \prime} \mathrm{N}$	$123^{\circ} 24^{\prime} 35^{\prime \prime} \mathrm{W}$
Juneau (Sitka)	$57^{\circ} 05^{\prime} 24^{\prime \prime} \mathrm{N}$	$135^{\circ} 15^{\prime} 35^{\prime \prime} \mathrm{W}$
Kodiak	$57^{\circ} 40^{\prime} 47^{\prime \prime} \mathrm{N}$	$152^{\circ} 28^{\prime} 47^{\prime \prime} \mathrm{W}$
Valdez (Cape Hinchinbrook)	$60^{\circ} 26^{\prime} 23^{\prime \prime} \mathrm{N}$	$146^{\circ} 25^{\prime} 48^{\prime \prime} \mathrm{W}$

Table D-3: Exclusion zones for Maritime Public Coast Stations

Licensee Name	Location	Latitude	Longitude
Shipcom LLC	Marina Del Ray, CA	$33^{\circ} 56^{\prime} 21^{\prime \prime} \mathrm{N}$	$118^{\circ} 27^{\prime} 14^{\prime \prime} \mathrm{W}$
Globe Wireless	Rio Vista, CA	$38^{\circ} 11^{\prime} 55^{\prime \prime} \mathrm{N}$	$121^{\circ} 48^{\prime} 34^{\prime \prime} \mathrm{W}$
Avalon Communications Corp	St. Thomas, VI	$18^{\circ} 21^{\prime} 19^{\prime \prime} \mathrm{N}$	$64^{\circ} 56^{\prime} 48^{\prime \prime} \mathrm{W}$
Globe Wireless	Bishopville, MD	$38^{\circ} 24^{\prime} 10^{\prime \prime} \mathrm{N}$	$75^{\circ} 12^{\prime} 59^{\prime \prime} \mathrm{W}$
Shipcom LLC	Mobile, AL	$30^{\circ} 40^{\prime} 07^{\prime \prime} \mathrm{N}$	$88^{\circ} 10^{\prime} 23^{\prime \prime} \mathrm{W}$
Shipcom, LLC	Coden, AL	$30^{\circ} 22^{\prime} 35^{\prime \prime} \mathrm{N}$	$88^{\circ} 12^{\prime} 20^{\prime \prime} \mathrm{W}$
Globe Wireless	Pearl River, LA	$30^{\circ} 22^{\prime} 13^{\prime \prime} \mathrm{N}$	$89^{\circ} 47^{\prime} 26^{\prime \prime} \mathrm{W}$
Globe Wireless	Kahalelani, HI	$21^{\circ} 10^{\prime} 33^{\prime \prime} \mathrm{N}$	$157^{\circ} 10^{\prime} 39^{\prime \prime} \mathrm{W}$
Globe Wireless	Palo Alto, CA	$37^{\circ} 26^{\prime} 44^{\prime \prime} \mathrm{N}$	$122^{\circ} 06^{\prime} 48^{\prime \prime} \mathrm{W}$
Globe Wireless	Agana, GU	$13^{\circ} 29^{\prime} 22^{\prime \prime} \mathrm{N}$	$144^{\circ} 49^{\prime} 39^{\prime \prime} \mathrm{E}$

D.2.2 Radioastronomy Observatories

Using correlation techniques, the Very Large Array (VLA) receivers operate with desired signal levels that are well below ambient noise levels and rely on the protection
criteria specified by the International Telecommunication Union Radiocommunication Sector (ITU-R) for radioastronomy observatories. Figure D-1 illustrates the antenna array at this facility near Socorro, New Mexico. The BPL Memorandum Opinion and Order defined an exclusion zone where Access BPL systems operating on overhead MV power lines in the $73.0-74.6 \mathrm{MHz}$ band should be no closer than 65 km from the coordinates of the VLA facility. ${ }^{5}$ The coordinate at the center of the VLA is $34^{\circ} 04{ }^{\circ}$ $43.50^{\prime \prime} \mathrm{N}, 107^{\circ} 37^{\prime} 03.82^{\prime} \mathrm{W}$. Figure D-2 shows the specified protection radii within the National Radio Astronomy Observatory. The BPL rules also state that Access BPL using LV power lines or underground power lines using the $73.0-74.6 \mathrm{MHz}$ band should be excluded within 47 km from the coordinates of the VLA facility. The analyses in Section 3.3.3 confirmed that these exclusion zone radii are reasonable to limit the power flux density (PFD) to levels defined for this frequency band by the ITU-R. This amounts to 2.04 percent of the bandwidth between 1.7 MHz and 80 MHz and less than 0.028 percent of U.S. territorial area, or less than 0.0006 percent of national spectrum resource between 1.7 MHz and 80 MHz .

Figure D-1: Very Large Array (VLA) radioastronomy observatory

[^2]

Figure D-2: VLA protection radii for overhead Access BPL shown within the National Radio Astronomy Observatory near Socorro, New Mexico.

D. 3 CONSULTATION AREAS

Part 15 of the Commission's rules for carrier current systems apply the same field strength limits for wanted and unwanted emissions, and so, consultation between BPL service providers and radio operators should not be limited to the fundamental frequencies intentionally used in Access BPL systems. Moreover, frequencies used by many communications receivers in the $1.7-30 \mathrm{MHz}$ frequency range are subject to change in the long-term and over hourly or shorter time frames. In light of these factors and given that the consultation areas needed for BPL systems are small, consultation should be required for all planned Access BPL operations at all frequencies of potential concern in these consultation areas. These consultation areas are:

- For frequencies in the $1.7-30 \mathrm{MHz}$ frequency range, the areas within 4 km of facilities located at the following coordinates:
- the Commission's protected field offices listed in 47 C.F.R. § 0.121, the point-of-contact for which is specified in that section;
- the aeronautical stations listed in Tables D-4 and D-5;
- the land stations listed in Tables D-6 and D-7;
- For frequencies in the $1.7-80 \mathrm{MHz}$ frequency range, the areas within 4 km of facilities located at the coordinates specified for radio astronomy facilities in US 311.
- For frequencies in the $1.7-80 \mathrm{MHz}$ frequency range, the area within 1 km of the Table Mountain Radio Receiving Zone, the coordinates and point of contact for which are specified in 47 C.F.R. § 21.113(b).
- For frequencies in the $1.7-30 \mathrm{MHz}$ frequency range, the areas within 37 km of radar receiver facilities located at the coordinates specified in Table D-8.

Point of contact

U.S. Coast Guard HQ

Division of Spectrum Management CG-622
2100 Second St., SW. Rm. 6611
Washington, DC 20593
Tel: 202-267-6036
Fax: 202-267-4106
Email: jtaboada@comdt.uscg.mil

Table D-4: Consultation Area Coordinates for Aeronautical (OR) Stations (1.7-30 MHz)

Command Name	Location	Latitude	Longitude
Washington	Arlington, VA	$38^{\circ} 51^{\prime} 07^{\prime \prime} \mathrm{N}$	$77^{\circ} 02^{\prime} 15^{\prime \prime} \mathrm{W}$
Cape Cod	Cape Cod, MA	$41^{\circ} 42^{\prime} 00^{\prime \prime} \mathrm{N}$	$70^{\circ} 30^{\prime} 00^{\prime \prime} \mathrm{W}$
Atlantic City	Atlantic City, NJ	$39^{\circ} 20^{\prime} 59^{\prime \prime} \mathrm{N}$	$74^{\circ} 27^{\prime} 42^{\prime \prime} \mathrm{W}$
Elizabeth City	Elizabeth City. NC	$36^{\circ} 15^{\prime} 53^{\prime \prime} \mathrm{N}$	$76^{\circ} 10^{\prime} 32^{\prime \prime} \mathrm{W}$
Savannah	Savannah, GA	$32^{\circ} 01^{\prime} 30^{\prime \prime} \mathrm{N}$	$81^{\circ} 08^{\prime} 30^{\prime \prime} \mathrm{W}$
Miami	Opa Locka, FL	$25^{\circ} 54^{\prime} 22^{\prime \prime} \mathrm{N}$	$80^{\circ} 16^{\prime} 01^{\prime \prime} \mathrm{W}$
Clearwater	Clearwater, FL	$27^{\circ} 54^{\prime} 27^{\prime \prime} \mathrm{N}$	$82^{\circ} 41^{\prime} 29^{\prime \prime} \mathrm{W}$
Borinquen	Aguadilla, PR	$18^{\circ} 18^{\prime} 36^{\prime \prime} \mathrm{N}$	$67^{\circ} 04^{\prime} 48^{\prime \prime} \mathrm{W}$
New Orleans	New Orleans, LA	$29^{\circ} 49^{\prime} 31^{\prime \prime} \mathrm{N}$	$90^{\circ} 02^{\prime} 06^{\prime \prime} \mathrm{W}$
Traverse City	Traverse City, MI	$44^{\circ} 44^{\prime} 24^{\prime \prime} \mathrm{N}$	$85^{\circ} 34^{\prime} 54^{\prime \prime} \mathrm{W}$
San Diego	San Diego, CA	$32^{\circ} 43^{\prime} 33^{\prime \prime} \mathrm{N}$	$117^{\circ} 10^{\prime} 15^{\prime \prime} \mathrm{W}$
Sacramento	McClellan AFB, CA	$38^{\circ} 40^{\prime} 06^{\prime \prime} \mathrm{N}$	$121^{\circ} 24^{\prime} 04^{\prime \prime} \mathrm{W}$
Astoria	Warrenton, OR	$46^{\circ} 25^{\prime} 18^{\prime \prime} \mathrm{N}$	$123^{\circ} 47^{\prime} 46^{\prime \prime} \mathrm{W}$
North Bend	Kapolei, HI	$23^{\circ} 24^{\prime} 39^{\prime \prime} \mathrm{N}$	$124^{\circ} 14^{\prime} 34^{\prime \prime} \mathrm{W} \mathrm{W}$
Barbers Point N	$158^{\circ} 04^{\prime} 15^{\prime \prime} \mathrm{W}$		
Kodiak	Kodiak, AK	$57^{\circ} 44^{\prime} 19^{\prime \prime} \mathrm{N}$	$152^{\circ} 30^{\prime} 18^{\prime \prime} \mathrm{W}$
Houston	Houston, TX	$29^{\circ} 45^{\prime} 00^{\prime \prime} \mathrm{N}$	$95^{\circ} 22^{\prime} 00^{\prime \prime} \mathrm{W}$
Detroit	Mt. Clemens, MI	$42^{\circ} 36^{\prime} 05^{\prime \prime} \mathrm{N}$	$82^{\circ} 50^{\prime} 12^{\prime \prime} \mathrm{W}$
San Francisco	San Francisco, CA	$37^{\circ} 37^{\prime} 58^{\prime \prime} \mathrm{N}$	$122^{\circ} 23^{\prime} 20^{\prime \prime} \mathrm{W}$
Los Angeles	Los Angeles, CA	$33^{\circ} 56^{\prime} 36^{\prime \prime} \mathrm{N}$	$118^{\circ} 23^{\prime} 48^{\prime \prime} \mathrm{W}$

Command Name	Location	Latitude	Longitude
Humboldt Bay	McKinleyville, CA	$40^{\circ} 58^{\prime} 39^{\prime \prime} \mathrm{N}$	$124^{\circ} 06^{\prime} 45^{\prime \prime} \mathrm{W}$
Port Angeles	Port Angeles, WA	$48^{\circ} 08^{\prime} 25^{\prime \prime} \mathrm{N}$	$123^{\circ} 24^{\prime} 48^{\prime \prime} \mathrm{W}$
Sitka	Sitka, AK	$57^{\circ} 05^{\prime} 50^{\prime \prime} \mathrm{N}$	$135^{\circ} 21^{\prime} 58^{\prime \prime} \mathrm{W}$

Point of contact
ARINC
2551 Riva Road
Annapolis, MD 21401
Tel: 1-800-633-6882
Fax: 410-266-2329
Email: bplnotifications@arinc.com
www.arinc.com
Table D-5: Consultation Area Coordinates for Aeronautical Receive Stations (1.7 - $\mathbf{3 0} \mathbf{~ M H z}$)

Locale	Latitude	Longitude
Southampton, NY	$40^{\circ} 55^{\prime} 15^{\prime \prime} \mathrm{N}$	$72^{\circ} 23^{\prime} 41^{\prime \prime} \mathrm{W}$
Molokai, HI	$21^{\circ} 12^{\prime} 23^{\prime \prime} \mathrm{N}$	$157^{\circ} 12^{\prime} 30^{\prime \prime} \mathrm{W}$
Oahu, HI	$21^{\circ} 22^{\prime} 27^{\prime \prime} \mathrm{N}$	$158^{\circ} 05^{\prime} 56^{\prime \prime} \mathrm{W}$
Half Moon Bay, CA	$37^{\circ} 39^{\prime} 64^{\prime \prime} \mathrm{N}$	$122^{\circ} 24^{\prime} 44^{\prime \prime} \mathrm{W}$
Pt. Reyes, CA	$38^{\circ} 06^{\prime} 00^{\prime \prime} \mathrm{N}$	$122^{\circ} 56^{\prime} 00^{\prime \prime} \mathrm{W}$
Barrow, AK	$71^{\circ} 17^{\prime} 24^{\prime \prime} \mathrm{N}$	$156^{\circ} 40^{\prime} 12^{\prime \prime} \mathrm{W}$
Guam	$13^{\circ} 25^{\prime} 12^{\prime \prime} \mathrm{N}$	$144^{\circ} 48^{\prime} 00^{\prime \prime} \mathrm{E}($ note: Eastern Hemisphere $)$
NY Comm Center, NY	$40^{\circ} 46^{\prime} 48^{\prime \prime} \mathrm{N}$	$73^{\circ} 05^{\prime} 46^{\prime \prime} \mathrm{W}$
Cedar Rapids, IA	$42^{\circ} 02^{\prime} 05.0^{\prime \prime} \mathrm{N}$	$91^{\circ} 38^{\prime} 37.6^{\prime \prime} \mathrm{W}$
Beaumont, CA	$33^{\circ} 54^{\prime} 27.1^{\prime \prime} \mathrm{N}$	$11^{\circ} 59^{\prime} 49.1^{\prime \prime} \mathrm{W}$
Fairfield, TX	$31^{\circ} 47^{\prime} 02.6^{\prime \prime} \mathrm{N}$	$96^{\circ} 47^{\prime} 03.0^{\prime \prime} \mathrm{W}$
Houston, TX	$29^{\circ} 36^{\prime} 35.8^{\prime \prime} \mathrm{N}$	$95^{\circ} 16^{\prime} 54.8^{\prime \prime} \mathrm{W}$
Miami, FL	$25^{\circ} 49^{\prime} 05^{\prime \prime} \mathrm{N}$	$80^{\circ} 18^{\prime} 28^{\prime \prime} \mathrm{W}$

Point Of Contact

U.S. Coast Guard HQ

Division of Spectrum Management CG-622
2100 Second St., SW. Rm. 6611
Washington, DC 20593
Tel: 202-267-6036
Fax: 202-267-4106
Email: jtaboada@comdt.uscg.mil

Table D-6: Consultation Area Coordinates for Land Stations, Set 1 (1.7-30 MHz)

Command Name	Location	Latitude	Longitude
COMMSTA Boston	Maspee, MA	$41^{\circ} 24^{\prime} 00^{\prime \prime} \mathrm{N}$	$70^{\circ} 18^{\prime} 57^{\prime \prime} \mathrm{W}$
Camslant	Chesapeake, VA	$36^{\circ} 33^{\prime} 59^{\prime \prime} \mathrm{N}$	$76^{\circ} 15^{\prime} 23^{\prime \prime} \mathrm{W}$
COMMSTA Miami	Miami, FL	$25^{\circ} 36^{\prime} 58^{\prime \prime} \mathrm{N}$	$80^{\circ} 23^{\prime} 04^{\prime \prime} \mathrm{W}$

Command Name	Location	Latitude	Longitude
COMMSTA New Orleans	Belle Chasse, IA	$29^{\circ} 52^{\prime} 40^{\prime \prime} \mathrm{N}$	$89^{\circ} 54^{\prime} 46^{\prime \prime} \mathrm{W}$
Camspac	Pt. Reyes Sta, CA	$38^{\circ} 06^{\prime} 00^{\prime \prime} \mathrm{N}$	$122^{\circ} 55^{\prime} 48^{\prime \prime} \mathrm{W}$
COMMSTA Honolulu	Wahiawa, HI	$21^{\circ} 31^{\prime} 08^{\prime \prime} \mathrm{N}$	$157^{\circ} 59^{\prime} 28^{\prime \prime} \mathrm{W}$
COMMSTA Kodiak	Kodiak, AK	$57^{\circ} 04^{\prime} 26^{\prime \prime} \mathrm{N}$	$152^{\circ} 28^{\prime} 20^{\prime \prime} \mathrm{W}$
Guam	Finegayan, GU	$13^{\circ} 53^{\prime} 08^{\prime \prime} \mathrm{N}$	$144^{\circ} 50^{\prime} 20^{\prime \prime} \mathrm{E}$

Point of contact
COTHEN Technical Support Center
COTHEN Program Manager
Tel: (800) 829-6336
Table D-7: Consultation Area Coordinates for Land Stations, Set 2 (1.7-30 MHz)

Site Name	Latitude	Longitude
Albuquerque, NM	$35^{\circ} 05^{\prime} 02^{\prime \prime} \mathrm{N}$	$105^{\circ} 34^{\prime} 23^{\prime \prime} \mathrm{W}$
Arecibo, PR	$18^{\circ} 17^{\prime} 26^{\prime \prime} \mathrm{N}$	$66^{\circ} 22^{\prime} 33^{\prime \prime} \mathrm{W}$
Atlanta, GA	$32^{\circ} 33^{\prime} 06^{\prime \prime} \mathrm{N}$	$84^{\circ} 23^{\prime} 35^{\prime \prime} \mathrm{W}$
Beaufort, SC	$34^{\circ} 34^{\prime} 22^{\prime \prime} \mathrm{N}$	$76^{\circ} 09^{\prime} 48^{\prime \prime} \mathrm{W}$
Cape Charles, VA	$37^{\circ} 05^{\prime} 37^{\prime \prime} \mathrm{N}$	$75^{\circ} 58^{\prime} 06^{\prime \prime} \mathrm{W}$
Cedar Rapids, IA	$42^{\circ} 00^{\prime} 09^{\prime \prime} \mathrm{N}$	$91^{\circ} 17^{\prime} 39^{\prime \prime} \mathrm{W}$
Denver, CO	$39^{\circ} 15^{\prime} 45^{\prime \prime} \mathrm{N}$	$103^{\circ} 34^{\prime} 23^{\prime \prime} \mathrm{W}$
Fort Myers, FL	$81^{\circ} 31^{\prime} 20^{\prime \prime} \mathrm{N}$	$26^{\circ} 20^{\prime} 01^{\prime \prime} \mathrm{W}$
Kansas City, MO	$38^{\circ} 22^{\prime} 10^{\prime \prime} \mathrm{N}$	$93^{\circ} 21^{\prime} 48^{\prime \prime} \mathrm{W}$
Las Vegas, NV	$36^{\circ} 21^{\prime} 15^{\prime \prime} \mathrm{N}$	$114^{\circ} 17^{\prime} 33^{\prime \prime} \mathrm{W}$
Lovelock, NV	$40^{\circ} 03^{\prime} 07^{\prime \prime} \mathrm{N}$	$118^{\circ} 18^{\prime} 56^{\prime \prime} \mathrm{W}$
Memphis, TN	$34^{\circ} 21^{\prime} 57^{\prime \prime} \mathrm{N}$	$90^{\circ} 02^{\prime} 43^{\prime \prime} \mathrm{W}$
Miami, FL	$25^{\circ} 46^{\prime} 20^{\prime \prime} \mathrm{N}$	$80^{\circ} 28^{\prime} 48^{\prime \prime} \mathrm{W}$
Morehead City, NC	$34^{\circ} 34^{\prime} 50^{\prime \prime} \mathrm{N}$	$78^{\circ} 13^{\prime} 59^{\prime \prime} \mathrm{W}$
Oklahoma City, OK	$34^{\circ} 30^{\prime} 52^{\prime \prime} \mathrm{N}$	$97^{\circ} 30^{\prime} 52^{\prime \prime} \mathrm{W}$
Orlando, FL	$28^{\circ} 31^{\prime} 30^{\prime \prime} \mathrm{N}$	$80^{\circ} 48^{\prime} 58^{\prime \prime} \mathrm{W}$
Reno, NV	$38^{\circ} 31^{\prime} 12^{\prime \prime} \mathrm{N}$	$119^{\circ} 14^{\prime} 37^{\prime \prime} \mathrm{W}$
Sarasota, FL	$27^{\circ} 12^{\prime} 41^{\prime \prime} \mathrm{N}$	$81^{\circ} 31^{\prime} 20^{\prime \prime} \mathrm{W}$
Wilmington, NC	$34^{\circ} 29^{\prime} 24^{\prime \prime} \mathrm{N}$	$78^{\circ} 04^{\prime} 31^{\prime \prime} \mathrm{W}$

Point Of Contact
ROTHR Deputy Program Manager
(540) 653-3624

Table D-8: Consultation Area Coordinates for Radar Receiver Stations (1.7-30 MHz)

Latitude/Longitude
$18^{\circ} 01^{\prime} \mathrm{N} / 66^{\circ} 30^{\prime} \mathrm{W}$
$28^{\circ} 05^{\prime} \mathrm{N} / 98^{\circ} 43^{\prime} \mathrm{W}$
$36^{\circ} 34^{\prime} \mathrm{N} / 76^{\circ} 18^{\prime} \mathrm{W}$

[^0]: ${ }^{1}$ See NTIA Comments, at Technical Appendix, pp. 2-18.

[^1]: ${ }^{2}$ See 47 C.F.R. §15.31(g)-(k).
 ${ }^{3}$ See BPL Report and Order, at Appendix C \mathbb{T} 2.b. 2 ("Testing shall be performed at distances of $0,1 / 4,1 / 2,3 / 4$, and 1 wavelength down the line from the BPL injection point on the power line. Wavelength spacing is based on the mid-band frequency...").
 ${ }^{4}$ Id. $\mathbb{\|}$ 2.b. 4 (describing the slant range distance extrapolation methodology).

[^2]: ${ }^{5}$ See Amendment of Part 15 regarding new requirements and measurement guidelines for Access Broadband over Power Line Systems, ET Docket No. 04-37, Memorandum Opinion and Order, released August 7, 2006, ("BPL Memorandum Opinion and Order"), at 99 57-59.

