UNITED STATES OF AMERICA

DRAFT PROPOSALS FOR THE WORK OF THE CONFERENCE

Agenda Item 1.1: to consider additional spectrum allocations to the mobile service on a primary basis and identification of additional frequency bands for International Mobile Telecommunications (IMT) and related regulatory provisions, to facilitate the development of terrestrial mobile broadband applications, in accordance with Resolution 233 (WRC-12);

Background Information: The 2012 World Radiocommunication Conference (WRC-12) recognized a need for additional radio spectrum to support the increasing mobile data traffic, and placed consideration of additional spectrum allocations for terrestrial mobile broadband applications on the agenda for WRC-15. Joint Task Group (JTG) 4-5-6-7 was established to consider spectrum requirements for IMT/mobile broadband and compatibility studies taking into account protection requirements of other services from concerned ITU-R Working Parties.

The radionavigation-satellite service (RNSS) has allocations used for space-to-Earth and space-to-space systems and networks in the 1 164-1 215 MHz, 1 215-1 300 MHz and 1 559-1 610 MHz bands. Operators plan or currently operate several global and regional non-geostationary satellite RNSS systems, including GPS, GLONASS, Beidou, QZSS, Galileo, IRNSS, as well as a number of geostationary-orbit satellite networks that provide space-based augmentation services within these bands. Operators deploy RNSS receivers and applications by the hundreds of millions worldwide, and are pervasive in every facet of everyday life. People use RNSS receivers in the Global Navigation Satellite System (GNSS) and other safety-of-life applications for precision surveying, construction, agriculture, and mining, environmental monitoring (including earthquake and tsunami monitoring), precision timing applications, all within many mobile broadband devices and other handsets. RNSS shares its allocations at 1 559-1 610 MHz and, 1 164-1 215 MHz with the aeronautical radionavigation service (ARNS), also a safety service.

There is a long history of protecting RNSS operations in the ITU. Multiple RNSS systems and networks transmit signals around-the-clock across all three ITU Regions and radiate across the entire surface of the Earth. RNSS frequency bands thus are operational at all times in all locations on Earth. RNSS signals are very low power, spread-spectrum signals coming from space that are difficult to detect. It takes special processing by RNSS receivers to extract the signal from the background noise. If a high-power, continuous in time, signal in the same frequency band, or an adjacent band, is broadcast near an RNSS receiver, it could desensitize the RNSS receiver to the degree that the RNSS receiver is unable to extract the RNSS signal from space.

Studies in the ITU in preparation for WRC-2000 concluded that even relatively weak continuous in time signals from mobile-satellite service satellites in geostationary orbit would not be able to be provided on a co-frequency basis with the RNSS and ARNS in the 1 559-1 610 MHz band. CPM-99 concluded, in Section 2.2.1.3 of the CPM Report for WRC-2000, that “although studies were not carried out on every different type of RNSS receiver used in all the numerous applications of RNSS, it was nevertheless possible to conclude that sharing between ARNS/RNSS and MSS (space-to-Earth) is not feasible in any portion of the 1 559-1 567 MHz band.” WRC-2000 agreed, and declined to add a co-primary MSS allocation to a portion of the RNSS band. To protect RNSS in the 1 164-1 215 MHz band, WRC-12 modified Resolution 417 to include strict power limits on high-powered terrestrial transmitters in the adjacent aeronautical radionavigation service band at 960-1 164 MHz.
Although all the RNSS allocations are in bands that have favorable propagation and other characteristics for mobile broadband, JTG 4-5-6-7 did not study the use of these or adjacent bands. This is indicative of the virtually universal will to protect RNSS operations on a global basis.

Due to the vital and global role of the RNSS, and demonstrated in-band and adjacent band frequency sharing incompatibility, no allocation to the mobile service or designation for IMT should be considered in the bands 1 164-1 215 MHz, 1 215-1 300 MHz and 1 559-1 610 MHz. Furthermore, any proposed new use of a band adjacent to any of these RNSS bands would need to include regulations that would ensure that mobile broadband systems did not cause harmful interference to RNSS receivers (e.g., guard bands, power limits, etc.).
Proposals:

NOC: USA/1.1/1

ARTICLE 5

Frequency Allocations

<table>
<thead>
<tr>
<th>Allocation to services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

1 164-1 215	AERONAUTICAL RADIONAVIGATION 5.328
space) 5.328B	RADIONAVIGATION-SATELLITE (space-to-Earth) (space-to-space) 5.328B 5.329 5.329A
	5.328A

1 215-1 240	EARTH EXPLORATION-SATELLITE (active)
RADIOLOCATION	RADIONAVIGATION-SATELLITE (space-to-Earth) (space-to-space) 5.328B 5.329 5.329A
SPACE RESEARCH (active)	5.330 5.331 5.332

1 240-1 300	EARTH EXPLORATION-SATELLITE (active)
RADIOLOCATION	RADIONAVIGATION-SATELLITE (space-to-Earth) (space-to-space) 5.328B 5.329 5.329A
SPACE RESEARCH (active)	Amateur
5.282 5.330 5.331 5.332 5.335 5.335A	

Reason: To ensure the protection of current and future operation of RNSS systems around the world.
ARTICLE 5

Frequency Allocations

1 525-1 610 MHz

<table>
<thead>
<tr>
<th>Allocation to services</th>
<th>Region 1</th>
<th>Region 2</th>
<th>Region 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 559-1610</td>
<td>AERONAUTICAL RADIONAVIGATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RADIONAVIGATION-SATELLITE (space-to-Earth) (space-to-space)</td>
<td>5.208B</td>
<td>5.328B</td>
</tr>
<tr>
<td></td>
<td>5.314</td>
<td>5.362B</td>
<td>5.362C</td>
</tr>
</tbody>
</table>

Reason: To ensure the protection of current and future operation of RNSS systems around the world.