
to: NTIA 
from: Dan Geer, P.O. Box 235, Cornersville 1N 37047 
date: 5 February 2018 
re: Docket 80103005-8005-0l 
cc: file 

Software is unconstrained by any "wearing out" process. This means that software 
already in place can last until such Lime that the hardware it requires simply dies in an era 
when it cannot be replaced. In other words, installed software has a very long tail - which 
brings us to the point: In the vocabulary of your Goal #1, for software to be sustainably 
secure it must be adaptable. We will now discuss the implications of that requirement. 

There is no need to re-prove that we arc accumulating software security ftaws.{1] There 
is no need to re-demonstrate that the need to find and fix flaws is serious enough that software 
vendors arc heavily augmenting their own regular ground troops with soldiers of fortune.[2] 
There is no need to re-calculate whether the compound annual growth rate of the Internet is 
exactly 35%, the implication is clear.[3] 

We are putting software into the field at massive rates (as a word, "massive" is not good 
enough, but it will have to do). We therefore come to a fork in the road: In one direction is 
hardware that is designed to fail in a fixed lime - so as to force new hardware and by way of 
that new software. In the other direction is software that has a remote management intcrf ace 
- so as to ensure the software can be strengthened should that need to be done. And we 
have to do the one or the other; the combination of unfixable and immortal is anathema. 

Commercial and non-commercial suppliers of software know this only too well, yet 
each and severally they abandon their unfixable products by the side of the information 
highway. The cynic might say that this is to sell more hardware, but besides being able to 
observe it with every bankruptcy, with every merger, with every product "end of life" letter, 
we can also sec it on the net: A non-negligible fraction of Internet backbone traffic cannot be 
identified by protocol, i.e., it has no provenance. Intentionally obscure traffic may as easily 
be heroic freedom fighters posting unexpurgated calls to arms as it can be paedophiles, but it 
could just be junk traffic - traffic whose emitter is on auto-pilot but whose purpose is long 
defunct. Yet with Qualcomm's Swann Lab at UC Berkeley predicting 1000 radios per 
human by 2025 and Pete Diamandis' book _Abundance_ calling for 45xl0~12 networked 
sensors by 2035, we have to anticipate that we won't be able to hear or find all the devices 
out there even if they are not purposefully configured to be unfindable. 

What happens when a single vendor abandons, let's say, 10 radios per human - just 10 
out of a 1000? That is the issue. If I abandon a car on the street, then eventually someone 
will be able to claim title. If I abandon a bank account, then the State will eventually seize it. 
If I abandon real estate by failing to remedy a trespass, then in the fullness of time adverse 
possession takes over. If I don' t use my trademark, then my rights go over to those who use 
what was and could have remained mine. If I abandon my spouse and/or children, then 
everyone is taxed to remedy my actions. If I abandon a patent application, then after a date 
certain its teaching passes over to the rest of you. If I abandon my hold on the confidentiality 
of data such as by publishing it, then that data passes over to the commonweal not to return. 
If I abandon my storage locker, then it will be lost to me and may end up on reality TV. The 
list is all but endless because it covers everything. Except for software. 



We learned the hard way about the downside effects of abandoned industrial facilities, 
whether commercial or governmental. Applying those lessons learned to the software arena 
requires long range thinking. There can be no effective policy but this one: If Company X 
abandons a code base, then that code base has to be seized on behalf of the public interest, 
and the company abandoning that product, that code base, had damned well better still have 
the build environment that made the software in the first place because without the build 
environment the unexpurgated source code is just another form of toxic waste - mineable 
for nuggets of vulnerability but of no constructive value save lo those of hostile intcnl 

At the very least, the legal standard of merchantability must immediately be amended to 
require that build environments arc preserved and documented well enough that a receiver 
can use them to make repairs the original vendor will no longer do. And makers of software 
must put aside not only those constructive tools but also some meaningful down payment on 
the means to support their products, no diff crent than a reserve for dccommisioning a reactor 
or for rcvegetating a pit mine. In the same way that the public interest requires local 
governments' tax liens to have primacy at the time of any change in a property's use or 
ownership, the assets of the vendor dropping support have to be exposed to seizure should the 
vendor have failed to meaningfully preserve the build environment of fielded systems. 

We have a long tradition in this country of kicking the can down the street in 
conf ormancc with what I know to call the Four Verities of Government: 

Important ideas arc rarely exciting. 
Exciting ideas arc rarcl y important. 
Not every problem has a good solution. 
Every solution comes with side effects. 

Add to that that while all politics is local all technology is global. Yes, we have to give up on 
some amount of optimality and efficiency if we arc to have robustness and resilience, and we 
only get the latter if we require, truly require, life-cycle costing of software dependence, a 
fact made pressingly urgent by the rate of deployment of new sof ware and new devices 
containing software. There is no doubt we've already lost control at some level;[4] everyone 
of a certain age has heard or said "We don't know what this code docs but if we touch it 
everything falls apart so DON'T TOUCH IT." The entire Y2K episode was about this. But 
with a trillion instantiations of software, this may well be our last chance to retain sclf­
dctermination. 

[1] "Security Debt" gcer.tinho.net/fgm/fgm.geer.1308.pdf 

[2] "2018 Bug Bounty List" www.bugcrowd.com/bug-bounty-list/ 

(3) "Implications of the IoT" geer.tinho.net/fgm/fgm.gcer.1612.pdf 

[4] "Replace Your Exploit-Ridden Firmware ... " www.youtube.com/watch?v=iffTJt vPCSo 


