
1

Note: This document is still in draft form, as part of the ongoing work from the Technical Capabilities
Working Group, part of NTIA’s Multistakeholder Process on IoT Security Updatability

Securing the IoT Update Process

Contents
Voluntary Framework for Enhancing Update Process Security .. 2

Part I: Basic Steps in an Illustrative Over-the-Air Update Process .. 3

Part II: Security Features to Enhance Over-the-Air Update Process Security ... 5

Basic Update Process Security Features ... 6

Upgraded Update Process Security Features (+1) ... 7

Enhanced Update Process Security Features (+2) .. 8

Quantum Resisten Update Process Security Features (+3) .. 9

Robustness Enhancing Update Process Features ... 10

2

Voluntary Framework for Enhancing Update Process Security
The proliferation of devices and growth in the Internet of Things (IoT) provides the opportunity for
technical advances that could dramatically improve people’s lives. As devices become increasingly
integrated into society, security and safety risks to individuals, businesses, and society may increase
without appropriate, risk-based security measures. One important tool to help mitigate risks is the
ability to reliably update software within devices over-the-air.

The level of update process security appropriate for a particular device will vary depending upon the
manufacturer’s unique business needs, resource availability, and risk tolerance. Executing a basic, over-
the-air update can be done without including any enhanced update process security features, however
such an update may be vulnerable to blocking, spoofing, or other malicious attack. Absent any security
precautions, updates can, in fact, dramatically reduce the security of a device. Decisions concerning
whether to employ additional features to enhance the security of the update process should be risk-
based, achieving security goals in a cost-effective and prioritized manner.

The term “updatable” does not mean the same thing to everyone. Different people and different
organizations may have their own ideas about what the term does (and should) mean. To better
address update process security risks, it is important to have a common understanding of updatability to
support manufacturers, purchasers, and other IoT stakeholders as they make risk-based decisions to
enhance update process security.

This document is intended to provide IoT device and software manufacturers with a common lexicon or
language to discuss risk mitigation in the over-the-air update process. A clear framework for
updatability, with defined steps, will allow discerning risk-aware decision makers to understand the
value of particular security features. Manufacturers1 of devices and the components that go into
devices have many reasons to be interested in their devices’ update process. Manufacturers need a way
to provide a secure updating mechanism for updatable devices and may want to convey this information
to their customers as a competitive advantage of their products and services. Consumers may also find
this information useful; it can complement the document by the Working Group on Communicating
Upgradability. Further value to the consumer results from a shared model of update processes across
the diverse IoT product space. Even if the devices are quite different, the steps of the update and the
potential security features may be similar.

Manufacturers can ensure that the devices they design, produce, and sell perform properly and address
security risks. To achieve these goals, manufacturers need detailed hardware and software design
criteria that they can integrate throughout their product development, production, sales, and support
processes.

Accordingly, this document is designed to support manufacturers in identifying and selecting
appropriate, risk-based security features to mitigate vulnerabilities in the update process. Part I of this

1 The term “Manufacturer” used throughout this document is understood to also represent an “assigned agent”;
“service provider”; or “vendor” as authorized and enabled by the Manufacturer.

3

document provides an overview of basic steps in an illustrative update process. Part II provides a menu
of voluntary processes that manufacturers may choose to adopt to enhance the level of security in the
update process depending upon individual business needs and risk tolerance.

Of note, update process security is only one aspect of many in enhancing the overall security of an IoT
device. Devices may have vulnerabilities never addressed by an update. There are also physical and
human security vulnerabilities that may not be addressable by software updates. This larger challenge
of mitigating IoT device vulnerabilities can only be addressed through a set of coordinated actions,
including industry best practices, device management and cyber-hygiene solutions, and greater
awareness of context-specific risks. Adoption of the highest level of over-the-air update process security
enhancements does not guarantee the security of the device itself. This voluntary guidance, therefore, is
intended only for the limited purpose of developing a common lexicon to support manufacturers in
enhancing security in effecting over-the-air updates.

Part I: Basic Steps in an Illustrative Over-the-Air Update Process
The update process is broken up into a linear sequence of steps that broadly describes the sequence to
be followed.

For each step, there are security features which can vary greatly depending upon the intended final
security posture desired by the manufacturer.

While the sequence of steps is common to all risk models, the security features implemented in each
step ultimately determines the level of security of the update process.

The following normative sequence of update steps are considered the basic elements in the update
process.

0. Create: Manufacturer creates image
a. This step is assumed to be out of scope for this guideline, but is represented here as it is

seminal to the initialization of this process.
b. The update image or multiple update images are packaged into a deliverable structure.2

1. Sign: Ensure integrity of update
a. Manufacturer includes a signature or signatures in the update deliverable, to be used to

vet the integrity of the update deliverable contents.
2. Protect: Prevent exposure of update deliverable

a. Manufacturer subjects the update deliverable to a translation (including encryption or
obfuscation) to prevent exposure of software image

3. Send: Data in motion

2 This step still has security concerns. Recent attacks on the update process have demonstrated the importance of
the integrity and security of the update process. One stakeholder recommended the trust in the update process
not rest on a single key or servers, and that at least one key required for an update to be trusted should be kept on
a non-Internet connected device.

4

a. The update deliverable is communicated to the target system / device.
4. Receive: Receive update deliverable

a. The target system / device receives update deliverable
5. Check: Process update deliverable

a. Target system / device validates integrity of encrypted update deliverable
b. Target system / device decrypts update deliverable
c. Target system performs any special handling of update images as indicated

6. Announce: User awareness of update on device 3
a. End user notification and/or approval of update installation

7. Distribute: Distribution
a. Update deliverable is parsed and distributed to intended target devices
b. Distribution may be of a recursive nature.

8. Process: Process update image
a. Each target (CPU, MCU, FPGA, etc.) receives its update image
b. Each target decrypts the update image
c. Each target validates the integrity of the plain text update image

9. Stage: System pre-update state
a. Any activities that need to be performed before the update occurs

10. Apply: Trigger update process
a. Perform the actual update process of installing the update image

11. Re-verify: Post-update verification
a. Each target validates the integrity of the installed update
b. Communicate results of verification to relevant targets

12. Activate: Activate / enable updated code
a. New updated code actually begins to be executed on the target (assuming successful

verification)
13. Clean-up: Post-update activities

a. Verify that system is functioning appropriately
b. Post-processing messaging (internal & external) and cleanup from update
c. This could include a negative outcome.

3 If the update is automatic, without requiring user involvement, then this step may happen later, if just to allow
the user to understand that the current SW/FW is up-to-date.

5

Part II: Security Features to Enhance Over-the-Air Update Process
Security

The steps listed above are necessary to ensure the integrity and the reliability of an update and the
update process. However, without the addition of security specific features at each step, the steps
themselves are vulnerable to attack by malicious actors and may in fact make the target device more
vulnerable during the upgrade process than it was before.4 The security needs of each step vary based
on context, threat, etc.

Below, we present a framework to understand security features that could be implemented at each step
to improve the security of an update process. The features themselves map to the steps of an update.
Because the security decisions should be based on needs, context, technical capabilities, and risk
evaluation, the security features are presented as a ‘menu,’ from basic security features, all the way to
features designed to resist quantum computing-assisted attacks in line with current state-of-the-art
encryption guidance.

4 Such attacks include (but are not limited to): Man in the Middle, Spoofing, ‘Bricking’ the device, Denial of Service
(blocking the upgrade), Version Downgrade, and Key theft.

6

Basic Update Process Security Features

1. Sign: Ensure integrity of update
a. A 128 bit cryptographic hash signature

2. Protect: Prevent exposure of update deliverable
a. Ephemeral and unique cryptographic keys are created / exchanged and stored in the

system/device
b. AES-128 encryption

3. Send: Data in motion
a. No special processing is assumed

4. Receive: Receive update deliverable
a. No special processing is assumed

5. Check: Process update deliverable
a. A 128 bit cryptographic hash signature
b. Unique encryption key for each system / device
c. AES-128 decryption

6. Announce: User awareness of update on device
a. Optional end user approval of update, as indicated in the deliverable

7. Distribute: Distribution to devices
a. No presumption as to the depth of layers of system / devices / CPUs to be targeted.

8. Process: Process update image
a. Each target decrypts their specific update image using AES-128 cryptography
b. Each target vets the integrity of the plain text update image using a 128 bit

cryptographic hash signature
9. Stage: System pre-update state

a. None assumed; Manufacturer defined
10. Apply: Trigger update process

a. No special processing is assumed
11. Re-verify: Post-update verification

a. Each target vets the integrity of the installed update using a 128 bit cryptographic hash
signature

12. Activate: Activate / enable updated code
a. No special processing is assumed

13. Clean-up: Post-update activities
a. No special processing is assumed

7

Upgraded Update Process Security Features (+1)

The following assumes all cryptographic operations have a minimum key width of 256 bits. Refer to NIST
SP 800-57 Part 1 Revision 4 (http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
57pt1r4.pdf) for appropriate guidance on key lengths and mechanisms.

1. Sign: Ensure integrity of update
a. NIST Key management for hashing (See NIST SP 800-147 and SP 800-57 for handling)

2. Protect: Prevent exposure of update deliverable
a. NIST Key management for decryption (See NIST SP 800-147 and SP 800-57 for handling)

3. Send: Data in motion
a. Validation of the Endpoint by cryptographically confirming that the end system/device is

the correct target before delivering the update deliverable.
b. Challenge/response mechanisms

4. Receive: Receive update deliverable
a. The communication medium utilized to deliver the upgrade deliverable needs to be

secured to current best practices level.
b. TLS v1.2
c. Pinning certificates

5. Check: Process update deliverable
6. Announce: User awareness of update on device

a. No special processing, beyond basic level is assumed
7. Distribute: Distribution to devices

a. Update image remains encrypted while in motion if traveling across exposed buses.
b. Support for multiple of layers of system / devices / CPUs to be targeted.

8. Process: Process update image
a. Each target decrypts the update image using AES-256 cryptography**
b. Each target validates the integrity of the plain text update image using a 256 bit

cryptographic hash signature**
9. Stage: System pre-update state

a. No special processing, beyond minimum level is assumed
10. Apply: Trigger update process

a. Coordination between updates for synchronized updated is supported
b. Coordination with end user supported
c. Persistent data conversion on each target is supported

11. Re-verify: Post-update verification
a. Each target validates the integrity of the installed update using at a minimum a CRC-16

and a cryptographically significant hash, with a width of no less than 256 bits
12. Activate: Activate / enable updated code

a. No special processing, beyond minimum level is assumed
13. Clean-up: Post-update activities

a. Local to the target system notification of successful update by each target
b. External to the target system, communications to external database of successful

upgrade to system, including identification and versioning information (i.e. “non-
repudiation”)

8

Enhanced Update Process Security Features (+2)
This enhanced level of security features addresses foreseeable exploits. A hardware root of trust may
be used as a backstop for all activities, including a signed chain of software execution, starting with a
hardware secure boot operation.

1. Sign: Ensure integrity of update
a. NIST Key management for hashing (See NIST SP 800-147 and SP 800-57 for handling)
b. Secure memory in which to perform hashing
c. PKI key derivation

2. Protect: Prevent exposure of update deliverable
a. NIST Key management for decryption (See NIST SP 800-147 and SP 800-57 for handling)
b. Secure memory in which to decrypt & store update
c. PKI key derivation

3. Send: Data in motion
a. Validation of the Endpoint by cryptographically confirming that the end system/device is

the correct target before delivering the update deliverable.
b. Challenge/response mechanisms
c. PKI.

4. Receive: Receive update deliverable
a. The communication medium utilized to deliver the upgrade deliverable needs to be

secured to current best practices level.
b. TLS v1.3 or greater
c. Pinning certificates

5. Check: Process update deliverable
6. Announce: User awareness of update on device

a. No special processing, beyond minimum level is assumed
7. Distribute: Distribution to devices

a. Update image remains encrypted while in motion**
b. Support for multiple of layers of system / devices / CPUs to be targeted.

8. Process: Process update image
a. Each target decrypts their specific update image using AES-256 cryptography**
b. Each target validates the integrity of the plain text update image using a 256 bit

cryptographic hash signature**
9. Stage: System pre-update state

a. No special processing, beyond minimum level is assumed
10. Apply: Trigger update process

a. Coordination between updates for synchronized updated is supported
b. Coordination with end user supported
c. Persistent data conversion on each target is supported

11. Re-verify: Post-update verification
a. Each target validates the integrity of the installed update using at a minimum a CRC-16

and a cryptographically significant hash, with a width of no less than 256 bits**
12. Activate: Activate / enable updated code

a. No special processing, beyond minimum level is assumed
13. Clean-up: Post-update activities

a. Local to the target system notification of successful update by each target
b. External to the target system, communications to external database of successful

9

upgrade to system, including identification and versioning information (i.e. “non-
repudiation”)

Quantum Resistant Update Process Security Features (+3)

In the future, computationally intensive cryptographic operations may become insecure through the use
of quantum computers.5 Additional precautions may be taken beyond any of the previous detailed
security features. The following list assumes these are features being added to a system which has
already implemented the Enhanced level of security.

These include the avoidance of the following encryption standards:

❏ RSA
❏ Elliptic Curve Cryptography (“ECC”)
❏ ElGamal
❏ DSA
❏ Diffie-Hellman key exchange

1. Sign: Ensure integrity of update
a. Secure memory in which to perform hashing
b. Cryptographic hash shall be SHA3-256 or Lamport Signature 256 bits

2. Protect: Prevent exposure of update deliverable
a. Encrypted with “Learning with Errors” or “Ring Learning with Errors”

3. Send: Data in motion
a. Validation of the Endpoint by cryptographically confirming that the end system/device is

the correct target before delivering the update deliverable.
4. Receive: Receive update deliverable

a. The communication medium utilized to deliver the upgrade deliverable needs to be
secured to current best practices level.

b. TLS v1.3 or greater
c. Pinning certificates

5. Check: Process update deliverable
6. Announce: User awareness of update on device

a. No special processing, beyond minimum level is assumed
7. Distribute: Distribution to devices

a. Update image remains encrypted while in motion**
b. Support for multiple of layers of system / devices / CPUs to be targeted.

8. Process: Process update image
a. Each target decrypts their specific update image
b. Each target validates the integrity of the plain text update image using a SHA3-256 or

Lamport Signature 256 bits

5 This broader threat has been documented in several other places, including NIST-IR 8105 “Report on Post-
Quantum Cryptography.” (2016) Available at: http://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf

http://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf

10

9. Stage: System pre-update state
a. No special processing, beyond minimum level is assumed

10. Apply: Trigger update process
a. Coordination between updates for synchronized updated is supported
b. Coordination with end user supported
c. Persistent data conversion on each target is supported

11. Re-verify: Post-update verification
a. Each target validates the integrity of the installed update using at a minimum a CRC-16

and a (SHA3-256 or Lamport Signature 256 bits)
12. Activate: Activate / enable updated code

a. No special processing, beyond minimum level is assumed
13. Clean-up: Post-update activities

a. Local to the target system notification of successful update by each target
b. External to the target system, communications to external database of successful

upgrade to system, including identification and versioning information (i.e. “non-
repudiation”

Robustness Enhancing Update Process Features
These improve the overall quality and robustness of the product and the update process, but are not
directly related to the security of the process. Of course, robustness and resilience are strongly related
to security themselves, but are more ‘second order’ effects.

● System documents persistent, non-volatile data
● Potential fall back to the last known good state
● Post-update testing - and activated, the functionality of the device may be verified. This

includes the essential functions of the device and any optional features of the device.
● Update persistent data
● Post-processing messaging and verification (internal, component-to-component)
● Storage of state beyond that which is to be updated.

1

Step Description Basic +1 ("Upgraded") +2 ("Enhanced") +3 ("Quantum")

0 Create Update creation is important, but not in scope for this guideline. There are still security considerations inherent in this step.
1 Sign Update signed. 128-bit hash. NIST key management for

hashing.
Secure memory, PKI. SHA3-256 or Lamport.

2 Protect Encryption and/or
obfuscation

Ephemeral, unique AES-
128 keys in device.

NIST key management for
decryption.

Secure memory, PKI. LWE or RLWE key
exchange

3 Send Communicated to target
device. No special assumption.

Endpoint verification PKI.

 See Enhanced. 4 Receive Target device receives
update. No special assumption.

Best practices
(e.g. TLSv1.2, cert. pinning)

TLSv1.3.

5 Check Target validates, decrypts,
and processes as needed.

Validation, decryption
w/per-device keys.

 See Basic. 6 Announce End-user notified about /
approves update install.

Optional end-user
approval

7 Distribute Image parsed, distributed
to HW targets
(e.g. CPU, FPGA).

No special assumption.
Encrypted in motion;
can target multiple layers.  See Upgraded.

8 Process Hardware target receives,
validates, and decrypts
image.

Target hardware
validates, decrypts.

Target validation, decryption
w/ AES-256.

Target and image
validation w/ AES-256.

SHA3-256 or Lamport.

9 Stage System-specific pre update
tasks.

Manufacturer defined.
 See Basic.

10 Apply Image install process runs.
No special assumption.

Opt. update and end-user
coordination, data
persistence.

 See Upgraded.

11 Re-verify Install integrity check;
optional communication of
results.

Install results validated. Validated with hash,
checksum.

Minimum CRC-16
checksum and AES-
256 hash.

SHA3-256 or Lamport hash
and checksum.

12 Activate New code executes if
verified. No special assumption.  See Basic.

13 Clean-up System-specific:
verification, messaging,
and clean-up.

No special assumption.
Local notification and
external logging of update.  See Upgraded.

Table 1: Summary of Security Features and options for progressive enhancement.

	Voluntary Framework for Enhancing Update Process Security
	Part I: Basic Steps in an Illustrative Over-the-Air Update Process
	Part II: Security Features to Enhance Over-the-Air Update Process Security
	Basic Update Process Security Features
	Upgraded Update Process Security Features (+1)
	Enhanced Update Process Security Features (+2)
	Quantum Resistant Update Process Security Features (+3)
	Robustness Enhancing Update Process Features

