

1

17 June 2021

National Telecommunications and Information Administration
Attn: Evelyn L. Remaley
NTIA, U.S. Department of Commerce, Room 4725
1401 Constitution Avenue NW,
Washington, DC 20230

Re: Request for public comment for NTIA-2021-0001, minimum elements for an SBOM,
and what other factors should be considered in the request, production, distribution, and
consumption of SBOMs.

Ms. Remaley:

We are pleased to respond to the request for public comment for NTIA-2021-0001,
Minimum Elements for an SBOM, and what other factors should be considered in the
request, production, distribution, and consumption of SBOMs.

The National Defense Industrial Association (NDIA) represents more than 1,600 corporate
members and over 80,000 individual members from small, medium, and large contractors.
Our members and their employees feel the impact of any policy change made in how the
United States equips and supports its warfighters. Our comments provided below come
from this diverse membership and represent a broad range of perspectives across the
defense industrial base (DIB).

NDIA is supportive of the overarching policy objectives behind Executive Order 14028,
“Improving the Nation's Cybersecurity,” but also encourages all federal agencies to provide
adequate time for industry to comment in advance of potential policy, regulatory, and
contractual changes to help with effective implementation. In this regard, NDIA and its
members welcome the opportunity to comment on the minimum elements for an SBOM,
and what other factors should be considered in the request, production, distribution, and
consumption of SBOMs. We hope that our comments and questions will help NTIA create
and publish a list of “minimum elements for an SBOM” that raises the bar on security
while also giving due consideration to costs and benefits of new requirements. Indeed, a
rushed rollout of new rules could ultimately lead to setbacks in our shared goal of
improving cybersecurity defense in the United States as we have seen in other areas.

In addition to working in the DIB, our membership supports the Federal Civilian
Executive Branch (FCEB) agencies, where decisions are often decentralized and have less

2

standardization. We encourage NTIA to ensure that the FCEB perspective is fully
incorporated into the SBOM decisions. Further, we would encourage this effort to include
requirements for protecting the SBOM, guidance on its maintenance and use, as well
guidance for enabling the SBOM supports for DevSecOps, speed-to-delivery, and
innovation and agility with enhanced security.

Questions:

1. Are the elements described [in the notice], including data fields, operational
considerations, and support for automation, sufficient? What other elements should be
considered and why?

The elements and intent described in the Executive Order and resulting notices are a
suitable foundation but one item that should be added is a rationale section that identifies
the benefits of the SBOM. If you are trying to incentivize firms to incur potentially
substantial additional costs, then identifying the benefits will help such as how software
quality will be improved. This section should also identify the effort required. With many
repair projects, there is a scale, often running from 1 (you can do it in one hour) to 5 (don't
do it unless you know what you are doing - hire an expert). Something similar should be
done here.

Another recommendation would be the inclusion of a list of resources that someone can
draw on if they have further questions. All these suggestions will make the document
attractive to potential adopters and especially Small to Medium sized businesses.

The elements in the notices are also a suitable foundation for the metadata requirements.
The fields in an SBOM should reflect sufficient coverage of a program’s components, while
taking into consideration the fact that there is a cost and effort associated with gathering
metadata from those components. A balance needs to be struck so as to minimize the effort
required by manual human authorship, while still maintaining sufficient coverage of a
program’s component makeup. Subsequently, we are generally in agreement that the data
fields outlined by the NTIA strike this balance; namely, Supplier Name, Component
Name, Unique Identifier, Version String, Component Hash, Relationship, and Author
Name. While these may be sufficient for a minimum viable SBOM, it does not reflect an
easily generated SBOM, however, as some of these fields may be quite difficult to
automatically parse given differences in standards and formats across various software
platforms and artifacts. For example, production of the hash of a component will not
always be possible in the case of secondary SBOM authorship, for example when binary
analysis is used to produce the SBOM, and the code being analyzed has been statically
linked. We suggest that NTIA should clarify the intended purpose of the hash. We ask

3

NTIA to further clarify the method for creating the hash (who, when, what, how), and in
particular whether the hash can or should be derived from binary or source.

While some tools do exist that can produce complete SBOMs, they rely on the assumption
of complete and available metadata and access to a dependency manager, which one does
not necessarily have. We have not yet seen full coverage to support automation across all
ecosystems and artifacts that would sufficiently remove manual authorship. That said, the
noted basis can be further extended to support the objective use cases of:
vulnerability/weakness analysis; vulnerability and incident response; supply chain
assessment, pedigree and integrity of the software product and dependent elements; and
confidentiality and integrity concerns related to the SBOM itself.

We advise against including a Vulnerability List in the data fields specifically. The
Executive Order states that “buyers can use an SBOM to perform vulnerability or license
analysis, both of which can be used to evaluate risk in a product,” and a vulnerability list
is the product of one or more vulnerability analysis efforts, not an SBOM. This is a further
security step than what it required in the SBOM. If the SBOM is equivalent to ingredients
in food packaging, then including a vulnerability list would equate to adding health risks
for each ingredient to food packaging as well. The ability to exchange with a standard
format for currently associated vulnerabilities against the SBOM is advisable, though the
analysis and reporting of such concerns may be held in a separate location.

We would like to note that different types of software (e.g. Flight safety critical, weapons
systems, national security systems, Infrastructure/Ground) may have different cyber
security, criticality and safety postures. SBOM items and meta-data may differ for each
domain but depending on domain, care must be taken to ensure no undue process or cost
is incurred.

Lastly, we believe that the value of an SBOM is only fully realized when operational
deployments of a software product or system, are maintained for each deployment to
reflect the unique configuration of that deployment. As a result, vulnerabilities, incidents
and other concerns such as a supply chain compromise must take into account that an
SBOM may vary for a single product across deployments and require adequate
configuration control.

We also recommend tracking provenance meta-data with linkage to the SBOM meta-data.
This meta-data is likely to be reported on a different cycle than the SBOM and so is
treated separately but with intent to maintain linkage to the SBOM.

2. Are there additional use cases that can further inform the elements of SBOM?

4

The NTIA SBOM Use Cases (Nov 2019) captures the majority of industry technical and
procedural use cases. In these use cases, considerations for the SBOM as a living
document representing a product, as it is proposed, designed, developed, maintained, and
eventually disposed of. The SBOM, as a result must accommodate partial information,
baseline updates to include revised licenses, and updated or end-of-life software elements.
Further, the SBOM must consider the configuration management/accuracy of deployments
or platform configurations; where one platform or deployment may maintain a different
SBOM from another platform. This is critical to assess implication of weaknesses,
vulnerabilities, or threats against part or all of the SBOM. Further, the threat landscape
and evolution of discovered or exposed weaknesses in one or more elements of a software
supply chain, and dependencies will result in re-evaluation of future security ratings (i.e.
“Energy Star-like” representation).

Work is required to establish standardizations for identifying/characterizing/quantifying
risks in partial or incomplete information of an SBOM, and the criticality of that
component/element within the SBOM.

3. SBOM creation and use touches on a number of related areas in IT management,
cybersecurity, and public policy. We seek comment on how these issues described below
should be considered in defining SBOM elements today and in the future.

a. Software Identity: There is no single namespace to easily identify and name every
software component. The challenge is not the lack of standards, but multiple standards
and practices in different communities.

Mandating a universal or standard software identification method across a domain, such
as the DoD is feasible. There are and will continue to be, however, multiple standards and
practices used at the product origin due to those products dependencies on commercial and
open-source software libraries and products. Any product or program that utilizes
components from open-source and/or proprietary sources is likely operating across
namespaces in which there can be no assumption of standardization and no imposition of
standardization. One potential solution is to use the DoD PlatformOne approach of
IronBank, which containerizes many widely used open source and commercially available
software products and then uniquely versions and identifies them. These packages have
been scanned, catalogued, and vetted for use by PlatformOne and its user community.
Reinventing this methodology is unnecessary.

5

b. Software-as-a-Service and online services: While current, cloud-based software has the
advantage of more modern tool chains, the use cases for SBOM may be different for
software that is not running on customer premises or maintained by the customer.

In our view, all “as a Service” delivery mechanisms present a different use case. The code
base changes at a rapid pace. It is not unusual to update code used to provide the services
in cloud environments multiple times a day. This reality makes an SBOM obsolete almost
immediately and render it essentially meaningless for assessing risk. A customer would
not benefit from a constantly changing document or manifest. We believe that a one size
fits all approach has the potential to increase the risk to Federal networks by undermining
the benefits of such services.

c. Legacy and binary-only software: Older software often has greater risks, especially if it
is not maintained. In some cases, the source may not even be obtainable, with only the
object code available for SBOM generation.

The SBOM generators that are available typically do rely on access to a dependency
management file, such as a POM, to parse library information. That said, there are open-
source tools that do perform binary analysis and other built-in commands to examine
artifacts. These tools pose limitations in how much information can be parsed from the
raw artifacts. There are also commercial programs, such as Synopsis’s Black Duck Binary
Analysis and NetRise program, which perform SCA operations on these artifacts. While
SCA tools have traditionally focused more on source code, the maturity and capability of
binary SCA tools are improving quickly, making them a desirable choice to complement
source code SCA tools in generating accurate and reliable SBOM. In the case of legacy and
binary-only software, even a partial SBOM generated by a binary SCA tool will contribute
greatly in uncovering security vulnerabilities compared to accepting or rejecting the legacy
and binary-only software as a black box.

d. Integrity and authenticity: An SBOM consumer may be concerned about verifying the
source of the SBOM data and confirming that it was not tampered with. Some existing
measures for integrity and authenticity of both software and metadata can be leveraged.

Some considerations must be made with respect to verifying the integrity and authenticity
of the SBOM. First, the SBOM likely is a composite of multiple SBOM from one or more
producers. As previously noted, this means that production of the hash of a component will
not always be possible in the case of secondary SBOM authorship.

6

e. Threat model: While many anticipated use cases may rely on the SBOM as an
authoritative reference when evaluating external information (such as vulnerability
reports), other use cases may rely on the SBOM as a foundation in detecting more
sophisticated supply chain attacks. These attacks could include compromising the
integrity of not only the systems used to build the software component, but also the
systems used to create the SBOM or even the SBOM itself. How can SBOM position itself
to support the detection of internal compromise? How can these more advanced data
collection and management efforts best be integrated into the basic SBOM structure?
What further costs and complexities would this impose?

Chain of custody for compile/link tool chains is not a widespread practice, even for
commercial compiler companies that produce tools that generate binaries for the safety
and security critical U.S infrastructure and defense sector software. Secure supply chain
best practices help mitigate these risks but a comprehensive repeatable process for
detection of internal or external compromise is still needed. In some situations, we use
development tool/environment diversity to guard against common mode errors in high
assurance safety critical software. While these techniques are higher in cost, they should
be considered in the trade space of “critical software” to mitigate insider threat and
external supply chain compromise.

f. High assurance use cases: Some SBOM use cases require additional data about aspects
of the software development and build environment, including those aspects that are
enumerated in Executive Order 14028. How can SBOM data be integrated with this
additional data in a modular fashion?

As part of high assurance use cases, an example is DO-330 tool qualification criteria.
Those qualification criteria are safety-centric and are intended to provide more confidence
in error free software. For example, if a code generator tool's output is part of an airborne
software and could insert an error, that tool is subject to higher scrutiny. In that context,
for an SBOM, that situation and tool could equate to a separate meta-data that designates
the criticality of the tool and associated product. In DO-330 terms, it would be Tool
Qualification Level (TQL), 1 through 5. These criteria could be easily added as extensions
to the SBOM, and in how the SBOM is utilized with respect to analysis and reporting.

g. Delivery. As noted above, multiple mechanisms exist to aid in SBOM discovery, as well
as to enable access to SBOMs. Further mechanisms and standards may be needed, yet too
many options may impose higher costs on either SBOM producers or consumers.

7

We recommend standardizing upon a “core” set of SBOM meta-data fields for “critical
software” as recommended above and by working with industry to select and mandate a
particular format standard. The format standard needs to support optional extensions for
high assurance. We generally advocate adopting the standardized format that the NTIA
has adopted, namely SPDX. Increasing the number of standardized formats brings risk, as
the choice likely will confuse many who don’t know how or why to choose one format over
another. Priority should be given to the automated production of SBOMs through
dependency discovery and supporting more functionalities that work with the existing
formats. Adoption and authorship of SBOMs will increase if less manual work is required.

h. Depth. As noted above, while ideal SBOMs have the complete graph of the assembled
software, not every software producer will be able or ready to share the entire graph.

A minimum depth cannot be explicitly mandated because not every software package (e.g.
open source) will be accompanied by desired or complete data. Empty or suboptimal
graphs are to be used as indicators that risks, gaps in relevant information and mitigation
plans needs to be identified depending upon the context of how the package or dependent
element is used, and its upstream and downstream impacts. These indicators should be
prominently visible to development and product security engineering teams using decision
aids through commercial tools like Sonatype Nexus that include push notifications.
Fundamentally, the depth, completeness, and accuracy of information may vary from
element to element. It is recommended that the metadata characterizing part or all of the
SBOM include a characterization of completeness, pedigree/provenance or other quality
factor, to support analysis of partial/incomplete/complete metadata which can lead to a
risk determination.

Data logs, especially automatically generated ones, can create volumes of data that is not
part of the production system. Retaining logs for all tools and all builds should have a
defined retention period. Provenance artifacts for a particular release artifact are already
defined and include the relevant security artifacts.

i. Vulnerabilities. Many of the use cases around SBOMs focus on known vulnerabilities.
Some build on this by including vulnerability data in the SBOM itself. Others note that
the existence and status of vulnerabilities can change over time, and there is no general
guarantee or signal about whether the SBOM data is up-to-date relative to all relevant
and applicable vulnerability data sources.

8

Vulnerability analysis should be a separate functional activity, that leverages a robust
SBOM and interface standard (SPDX and extensions, as example) to develop an
integrated repository that associates and derives potential weakness, vulnerability, threat,
or unknown concerns. Unknown concerns would be associated with risk due to a lack of
clear enumeration and characterization within the BOM. The lack of information, in and
of itself presents a gray risk that could be used to indicate and focus assessment by the
developer/program. This risk categorization for unknown or missing information requires
standardization.

Regarding the existence of and change of vulnerabilities over time, Automation tools built
within DevSecOps software factories allows one to maintain configuration control over
SBOMs, and accommodate frequent (e.g. daily) vulnerability status changes to part or all
of a package and associated SBOM. This is accomplished and supported using already-
available tools like Artifactory, XRay, and Gitlab.

j. Risk Management. Not all vulnerabilities in software code put operators or users at real
risk from software built using those vulnerable components, as the risk could be mitigated
elsewhere or deemed to be negligible. One approach to managing this might be to
communicate that software is “not affected” by a specific vulnerability through a
Vulnerability Exploitability eXchange (or “VEX”), but other solutions may exist.

We would concur that a measure of impact or the affect as a result of a vulnerability is
important. Perhaps more important, is the determination of what the product or mission
performance consequence of one or more weaknesses/vulnerabilities or threats should they
be exploited. Following this resiliency and mission impact perspective weakness,
vulnerability, and threat must be assessed with respect to the adversity to the product and
its performance. For example, a critical vulnerability or exploit may exist against a
specific software element or library, the likelihood and more so consequence to the
overarching product, may be such that it does not warrant elevation or mitigation, when
compared to cost or other factors. Conversely, a relatively simple weakness may expose a
greater product or mission impact that would warrant mitigating a relatively benign
concern.

The vulnerability exchange format, must align with the SBOM unique identification and
characterize both individual and product/mission level criticality to properly prioritize,
plan, and mitigate.

9

4. Flexibility of implementation and potential requirements. If there are legitimate
reasons why the above elements might be difficult to adopt or use for certain technologies,
industries, or communities, how might the goals and use cases described above be fulfilled
through alternate means? What accommodations and alternate approaches can deliver
benefits while allowing for flexibility?

Just like the internet economy that incentivizes producers and consumers of IP packets
like content delivery networks, internet exchanges, and internet service providers to
deliver/route traffic reliably and in a timely fashion, the DoD and its broad supply base
can incentivize commercial software suppliers to comply with SBOM best practices
through supplier management relationships and additional compensation models. Even so
the ultimate burden of proof is on the end product developer that relies on those software
packages. Making the process too arduous (update frequency, degree of specificity, depth
of supply chain, etc.) will likely reduce the effectiveness and drive innovators away from
the USG market or result in low quality deliverables that will just lead to a whole lot of
auditing to validate by the USG.

Either additional costs must be incurred to “verify but trust” or rely completely on the
“zero trust architecture” to isolate “critical software” from potential bad actors. In some
instances, where national security and human safety are at risk, the cost to “verify but
trust” must be paid. Until the DoD and its supply base complete Dr. Roper’s
transformation to the “digital trinity”, these issues will remain.

NDIA appreciates the opportunity to comment on the Interim Rule. The point of contact
for this comment is Robbie Van Steenburg, NDIA’s Regulatory Policy Associate, who may
be reached at (703) 247-2562 or at rvansteenburg@ndia.org.

Very respectfully,

National Defense Industrial Association

