Ms. Mindel De La Torre
Chief of the International Bureau
Federal Communications Commission
445 12th Street SW
Washington, DC 20554

Dear Ms. De La Torre:

The National Telecommunications and Information Administration (NTIA) on behalf of the Executive Branch agencies, approves the release of the attached Executive Branch preliminary view for WRC-15. The enclosed draft preliminary view addresses agenda item 1.1 to consider additional spectrum allocations to the mobile service on a primary basis and identification of additional frequency bands for International Mobile Telecommunications (IMT) and related regulatory provisions, to facilitate the development of terrestrial mobile broadband applications, in accordance with Resolution 233 (WRC-12) for the band 1695-1710 MHz.

This draft preliminary view considers the federal agency inputs toward the development of U.S. proposals for WRC-15. NTIA forwards this package for your consideration and review by your WRC-15 Advisory Committee. Dr. Darlene Drazenovich is the primary contact from my staff.

Sincerely,

Karl B. Nebbia
Associate Administrator
Office of Spectrum Management

Enclosure
UNITED STATES OF AMERICA

DRAFT PRELIMINARY VIEWS FOR WRC-15

Agenda Item 1.1: to consider additional spectrum allocations to the mobile service on a primary basis and identification of additional frequency bands for International Mobile Telecommunications (IMT) and related regulatory provisions, to facilitate the development of terrestrial mobile broadband applications, in accordance with Resolution 233 (WRC-12)

BACKGROUND: Third- and fourth-generation advanced wireless systems provide terrestrial and satellite-based broadband and multi-media capabilities, and represent a path for expanding broadband capabilities and coverage areas. It is important for administrations to identify spectrum that could be made available for terrestrial mobile broadband as administrations plan their spectrum use and as industry plans to meet the marketplace requirements of the future. The early identification of spectrum is critical to the timely introduction of new broadband services due to the time required to complete the reallocation process, which could include developing service rules or sharing methods, conducting auctions, relocating incumbent users to comparable spectrum as necessary, and the redesign of incumbent systems to accommodate new operations.

The United States considered the entire band 1 675-1 710 MHz as a candidate for terrestrial mobile broadband. The band 1 675-1 710 MHz includes co-primary allocations to the meteorological aids service, the meteorological-satellite service (space-to-Earth), and an additional co-primary allocation to the mobile service in the frequency range 1 675-1 690 MHz. The United States and other countries operate meteorological aids in the frequency range 1 675-1 683 MHz. Meteorological aids provide data critical to the accuracy of global weather prediction models and calibration of meteorological satellite sensor data. There is no suitable alternative for the in-situ measurements provided by meteorological aids and loss of data would have a significant negative impact on global weather prediction. Application of exclusion zones or other sharing mechanisms is impractical due to the large number of fixed and transportable meteorological aids stations releasing transmitters that drift up to 250 km while in flight.

Emergency managers and the public currently rely on information that National Oceanographic and Atmospheric Administration (NOAA) satellites broadcast in the 1 690-1 695 MHz range. This information includes severe weather warnings and forecasts via the Emergency Manager’s Weather Information Network and re-broadcast data from ground-based sensors, such as flood gauges. NOAA’s satellite command and control communications reside in the frequency range of 1 690-1 695 MHz. It is difficult to provide alternative communications to users who do not have reliable Internet access or who are in areas where a weather event has degraded or destroyed power or communications infrastructure. Without the data provided by meteorological satellite transmissions, emergency managers and other users would have to receive broadcasts through another transmission means, such as commercial satellite broadcasts with an equivalent amount of reliability and availability present in current direct broadcast transmissions. The studies concluded that mobile broadband systems are incompatible with existing meteorological systems in the range of 1 675-1 695 MHz.
The United States determined that the range 1 695-1 710 MHz offers opportunity for mobile broadband while minimizing disruption of meteorological operations upon which the domestic and international public safety and weather prediction communities depend. Initial studies concluded that the use of some geographical limitations on terrestrial mobile broadband could protect the limited number of critical meteorological earth stations within 1 695-1 710 MHz.

U.S. VIEW: The United States supports studies to develop technical requirements that would allow a primary mobile allocation, and identification for broadband wireless systems including IMT, in the band 1 695-1 710 MHz. These studies should identify sharing arrangements to ensure protection of existing services, namely meteorological-satellite earth stations.