Dr. Marc Valliant, VP & CTO

"Face Recognition Technology Today"

before the

NTIA Multi-Stakeholder Process To Develop Consumer Data Privacy Code of Conduct Concerning Facial Recognition Technology

February 25, 2014

Facial Recognition Applications in Use Today

Examples

- Commercial:
 - Employers for Time and Attendance Verification
 - Physical Access Control Security (Buildings)
 - Logical Access Control (Computer/Device Access)
 - Document Authentication
- Government:
 - Drivers Licenses to reduce duplication and fraud
 - Passport Verification
 - Jail Management Systems and Booking
 - Law Enforcement Investigations
- Social/consumer:
 - Photo Organizing Google's Picassa, Facebook
 - Smartphone and App Access Control

Defining Face Recognition

Computer Facial Recognition is the determination of an anonymous or unknown identity of a human being based on the facial characteristics and features derived from camera or digital photo

Methods: 1:1 Verify and 1:Many Search

Other Applications often called Facial Recognition but are not:

- Face Detection finding the FACES, not identifying who in the photo
- Gender Determination
- Age Range Determination

Face Recognition is based on Face Biometric Templates

Face Biometric Template is...

- Not the actual facial image
- A vector of numbers which represent the facial image's characteristics including measurements, color, lighting, 2D/3D
- Created by a Face Biometric Algorithm
- Not standard format and varies between different algorithms. Usually proprietary.
- Different for each photo even of the Same Person
- Not a match between two templates, only a degree of statistical closeness

Versus an Identifier

- Social Security No., Drivers License No., Passport No.
 - Binary match or no match
- Biometric Template (face, fingerprint, or iris) + Name and Meta Data together is an Identifier

Why wasn't Dzhokhar Tsarnaev identified by the Massachusetts Department of Motor Vehicles system from the video surveillance images?

Controlled Facial Photo

Today's FR technology will reliably find this photo in a mugshot database of controlled facial images

Confounding Variables in Uncontrolled Facial Photos

Problematic variables:

- 1. Resolution (not enough pixels)
- 2. Facial Pose angulated
- 3. Illumination
- 4. Occluded facial areas

What happens:

- Facial Feature Points (eyes, etc.) not found or distorted
- **❖** Algorithm Measurements in Error
- Not Enough Data to Process

Defining a Facial Recognition MATCH Degree of Similarity

A statistical score between two face biometric templates

Based on a facial characteristics algorithm determines degrees of SIMILARITY or a Score

If the Score meets a certain threshold, then it is considered a Match

Thresholds are determined by the operating parameters required

Operating Parameters are defined by an acceptable error rate for the applications use

Defining Error Rates

False Accept: System claims a pair of pictures are a match, when they are actually pictures of different individuals.

False Accept Rate (FAR): Frequency that the system makes False Accepts Example: FAR of 0.1% system will make 1 false accept for every 1000 imposter attempts

False Reject: System claims a pair of pictures are a mismatch, when they are actually pictures of the same individual

False Reject Rate (FRR): Frequency that the system makes False Rejects

ID Rate = 100% minus FRR

E.g.: FRR of 2% or Identification rate of 98% system will reject 2 matches for every 100 authorized attempts

As FAR is lowered, expect ID Rates to lower

Error Rates in Practice

Operation implications

- Control ID Rate by selecting the FAR operating point
- Desire FAR to be as low as possible..... Minimize imposters
- If ID Rate is too low, then forcing the subject to try again, and again

No standards exist for "acceptable" error rates, or a rating system, meaning "success" is deemed different within every vendor product, and in every application purpose.

Useable Error Rates Vary by App

App Examples	ID RATE	FAR
Access Control Normal	90%	0.10%
 Access Control High Security 	80%	0.01%
 Time and Attendance 	85%	0.10%
 Drivers License/Passport Deduplication 	97%	1.00%
 Mobile Phone Authentication 	75%	0.20%
 Facebook Private Photo Search 	75%	1.00%

Even mugshots will reduce id rates if not "controlled"

Mugshots are subject to control standards, the "Uncontrolled Face Use Standards ISO/IEC 19794-5 "for Enrollments.

Variables like lighting, glasses, background, slight pose, face proportion can cause errors.

Uncontrolled Facial Imagery = High Error Rates

NIST Multiple-Biometric Evaluation (MBE)

Dependence of accuracy on face yaw angle

Can a controlled photo find a match in LinkedIn?

LinkedIn Facial Search: Possible but dependent on the input photo and the database enrollment

- LinkedIn are Faces in the Wild
 - Assuming you can scoop all the faces for enrollment into a DB
 - Very low chances in matching
- •Conjecture: If LinkedIn forced an IEC/ISO Mugshot standard then you'd have a searchable database

Will new facial technologies solve these problems?

Pose Correction with 3D Model Estimation

Summary

• Fact: As of today, facial recognition technology can not reliably match face templates to identites based on photo harvesting of uncontrolled images from social networks, let alone in a video surveillance environment, without forensic support.

• Fact: Controlled images are key to reliable matching, and thus the success of current facial recognition technologies.

