
NTIA Software
Component

Transparency
April 29, 2021

Formats
&

Tooling

Workgroup

Source: Pierre Metivier (https://flic.kr/p/rdHr) CC BY-NC / Desaturated from the original

https://flic.kr/p/rdHr

Formats & Tooling
Working Group

Co-chairs: JC Herz & Kate Stewart

Meeting biweekly since July 2018

● Fridays at 1100 EDT
● https://lists.linuxfoundation.org/m

ailman/listinfo/ntia-sbom-formats

Adoption of concepts from framing
into existing formats and tools that
work with those formats.

JC Herz

Ion Channel

COO

jc.herz@ionchannel.io

Kate Stewart

Linux Foundation

VP of Dependable Embedded

Systems

stewart@linux.com

2

Author Head Shot
JPEG2.jpg

https://lists.linuxfoundation.org/mailman/listinfo/ntia-sbom-formats
https://lists.linuxfoundation.org/mailman/listinfo/ntia-sbom-formats
mailto:jc.herz@ionchannel.io
mailto:stewart@linux.com

Agenda

• Workgroup Goals

• Recap of Formats in Use

• Updated Formats White Paper

• Taxonomy update

• Playbooks

• Consumer Playbook Overview

• Supplier Playbook Overview

• First Plugfest feedback

• Future Directions

• Feedback Requests

Formats and Tooling Workgroup Goal
Wrapping up from phase I, we identified for the need for:

– Tooling
• Documenting tooling

• Identifying tooling gaps ← Plugfest starting to highlight

• Documenting processes ← Playbooks starting to address

• Turnkey universal translation tools

Formats and Tooling workgroup is focusing on addressing these items.

Formats and Tooling: Objectives

Identify SBOM Formats in Commercial Use

• SPDX - https://spdx.github.io/spdx-spec/
• CycloneDX - https://cyclonedx.org/docs/latest
• SWID - ISO/IEC 19770-2:2015

Identify Software Identifiers in Commercial Use and Emerging Identifiers

• Common Platform Enumeration - CPE
• Package URLs - PURL
• Software ID tags - SWID tag
• Software Heritage persistant ID - SWHID

https://spdx.dev/specifications/
https://spdx.github.io/spdx-spec/
https://cyclonedx.org/specification/overview/
https://cyclonedx.org/docs/latest
https://www.iso.org/standard/65666.html
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe
https://github.com/package-url/purl-spec
https://csrc.nist.gov/projects/Software-Identification-SWID
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

Formats and Tooling: Objectives

• Define and categorize criteria for the minimum required information in an SBOM from
Framing Definitions

• Field definitions
• Data extensions for provision of additional/external/deeper information

• Enable translation between SBOM formats
• See emerging tooling & taxonomy

• Create Playbooks for Generation and Consumption of SBOM
• Supplier Playbook - draft release:

https://docs.google.com/document/d/16FwpPX3P0Pd1D82Dp2VmpRnaMWUA-wvfXbL7AIXDthM/edit

• Consumer Playbook - draft release:
https://docs.google.com/document/d/1Ae0l1MDS8m1on58e8mdVIA9NujzPD0k5j352VlDZr9I/edit

++ Create a reference Corpus of example SBOMs
• Plugfest to identify Gaps
• Agree on reference examples to use in each format for others to consult.

https://docs.google.com/document/d/16FwpPX3P0Pd1D82Dp2VmpRnaMWUA-wvfXbL7AIXDthM/edit
https://docs.google.com/document/d/1Ae0l1MDS8m1on58e8mdVIA9NujzPD0k5j352VlDZr9I/edit

What should a minimum viable SBOM contain?

NTIA SBOM
Minimum Fields

SPDX CycloneDX SWID

Supplier Name (3.5) PackageSupplier: publisher <Entity> @role
(softwareCreator/publisher),
@name

Component Name (3.1) PackageName: name <softwareIdentity> @name

Unique Identifier (3.2) SPDXID: bom/serialNumber and
component/bom-ref

<softwareIdentity> @tagID

Version String (3.3) PackageVersion: version <softwareIdentity> @version

Component Hash (3.10) PackageChecksum: hash <Payload>/../<File>
@[hash-algorithm]:hash

Relationship (7.1) Relationship:
CONTAINS

(Nested
assembly/subassembly
and/or dependency graphs)

<Link> @rel, @href

Author Name (2.8) Creator: bom-descriptor:metadata/manuf
acture/contact

<Entity> @role (tagCreator),
@name

Source: NTIA’s Framing Software Component Transparency: Establishing a Common Software Bill of Material (SBOM)

https://www.ntia.gov/files/ntia/publications/framingsbom_20191112.pdf

Translating between SBOM Formats & File Types

SwiftBOM: (SPDX(.spdx), SWID(.xml), CycloneDX(.xml,.json))
- Demo at: https://democert.org/sbom/
- Source code at: https://github.com/CERTCC/SBOM/tree/master/sbom-demo

DecoderRing: (SPDX (.spdx), SWID(.xml))

- Source code at: https://github.com/DanBeard/DecoderRIng

SPDX tools: (SPDX (.spdx, .json, .yaml, .rdf, .xml, .xls))
- Demo at: https://tools.spdx.org/app/
- Source code at: https://github.com/spdx/spdx-online-tools

CycloneDX CLI: (CycloneDX (.xml, .json), SPDX(.spdx))
- Source code at: https://github.com/CycloneDX/cyclonedx-cli

https://democert.org/sbom/
https://github.com/CERTCC/SBOM/tree/master/sbom-demo
https://github.com/DanBeard/DecoderRIng
https://tools.spdx.org/app/
https://github.com/spdx/spdx-online-tools
https://github.com/CycloneDX/cyclonedx-cli

Category Type Description

Produce Build SBOM is automatically created as part of building a software artifact and contains information about
the build

Analyze Analysis of source or binary files will generate the SBOM by inspection of the artifacts and any
associated sources

Edit A tool to assist a person manually entering or editing SBOM data

Consume View Be able to understand the contents in human readable form (e.g. picture, figures, tables, text.). Use
to support decision making & business processes

Diff Be able to compare multiple SBOMs and clearly see the differences (e.g. comparing two versions of
a piece of software)

Import Be able to discover, retrieve, and import an SBOM into your system for further processing and
analysis

Transform Translate Change from one file type to another file type while preserving the same information

Merge Multiple sources of SBOM and other data can be combined together for analysis and audit purposes

Tool support Support use in other tools by APIs, object models, libraries, transport, or other reference sources

Updated: Taxonomy for Classifying SBOM Tools

More details in: https://www.ntia.gov/files/ntia/publications/ntia_sbom_tooling_taxonomy-2021mar30.pdf

https://www.ntia.gov/files/ntia/publications/ntia_sbom_tooling_taxonomy-2021mar30.pdf

Next steps - tool collections

● Google docs today already list tools in the three formats
○ SWID: http://tiny.cc/SWID

○ SPDX: http://tiny.cc/SPDX

○ CycloneDX: http://tiny.cc/CycloneDX

● Plan to shift this over to GitHub to allow a more open process.

● Working Group will develop some transparent governance rules
○ Allow anyone to submit tools
○ Have some clear assertions for tools to get on the list

http://tiny.cc/SWID
http://tiny.cc/SPDX
http://tiny.cc/CycloneDX

Playbooks for using “Tools in Operation”

- Concepts of Operation (CONOPS) for how they can be used
- Generation and Consumption
- Different Use Cases

- Software Lifecycle Management
- Entitlements
- Vulnerability Management

- Different Roles in the Supply Chain
- Third Party Supplier (OSS, Commercial Software)
- Integrator
- First-party Developer (Internal Enterprise DevOps)
- Procurement
- Compliance (interface with external certifiers, regulators, insurers)

SBOM Playbook: Consumer Playbook
• Acquisition of SBOM from supplier
• SBOM Ingestion and Parsing
• Software Entity Resolution
• Data Flows into Third Party Processes and Platforms

• Configuration Management Database
• Security Operations Center
• Software Asset Management System
• Supply Chain Risk and Vendor Management

• Ongoing Monitoring
• IP and Confidentiality Status of SBOMs and Underlying Data

SBOM Playbooks: Supplier Playbook
• Supplier definition includes: commercial vendor, contract developer,

open source software supplier developing and maintaining OSS code.
• SBOM production workflow: development pipeline vs. legacy processes

• SBOM scope: What’s in the Box
• Areas of consensus: single application and its compiled dependencies
• Still in discussion: external services (SBOM formats can do this)
• Need for clarity about SBOM coverage: runtime dependencies, container contents
• As long as extent of coverage is clear (i.e. fields present with “no attestation”), level of detail will

ultimately be negotiated between supplier and consumer

• Validation of SBOMs (formats)
• Verification of Components
• Provision of SBOMs to recipients

• Reference to NTIA Framing Group report:
https://www.ntia.doc.gov/files/ntia/publications/ntia_sbom_framing_sharing_july9.pdf

• IP Status of SBOMs

https://www.ntia.doc.gov/files/ntia/publications/ntia_sbom_framing_sharing_july9.pdf

Plugfest

Plugfest used common set of projects to generate source and binary SBOMs
for in the different formats for the same example from different tools, to aid
compare & contrast. “Sweat equity” from 11 producers and 6 consumers.

• First Plugfest:

• Time v1.9 (a small package being used in most OSes)
• node-express-realworld-example-app (Small example node.js application)

• zephyr-v2.5.0/samples/hello_world (hello world for embedded)

• blinky.ex (blinky for embedded)

• Second Plugfest:

• Same set + a couple of binaries (possibly a container)

https://ftp.gnu.org/gnu/time/time-1.9.tar.gz
https://github.com/gothinkster/node-express-realworld-example-app
https://github.com/zephyrproject-rtos/zephyr/tree/zephyr-v2.5.0/samples/hello_world
https://github.com/nerves-project/nerves_examples/blob/main/blinky/lib/blinky.ex

Organization Produce /Consume Formats Examples Tried

aDolus - FACT Produce SPDX, SWID Time, Node, Zephyr, Blinky

Copado/New Context Produce SPDX, CycloneDX Node

CyBeats Produce + Consume SPDX, CycloneDX Time, Node, Zephyr

Fortress Produce CycloneDX Time, Node, Zephyr, Blinky

FOSSology Produce SPDX Time

LLNL longclaw Produce SPDX Time, Zephyr

ORT + Scancode Produce SPDX, CycloneDX Time, Node, Zephyr

sFractal Produce SPDX, CycloneDX, SWID Blinky

Source Auditor Produce SPDX Time, Node

Synopsys Black Duck Produce SPDX Time, Node, Zephyr, Blinky

Wind River Produce SPDX Time

Organization Produce /Consume Formats Examples Tried

Ion Channel Consume SPDX Node

NYP Consume SPDX Node, Time, Blinky, Zephyr

NSA Consume SPDX -- (did Schema analysis)

SW 360 Consume SPDX Time, Node, Zephyr, Blinky

binaire.io Consume SPDX, CycloneDX Time, Node, Zephyr, Blinky

Summary:
- Participants found it useful and wanted to have follow on, with same samples plus binaries.
- Flagged the importance of having some set of naming conventions or practices for SBOMs themselves.
- Participants also discussed challenges around packages vs. files.
- The community seemed to gravitate to JSON for encoding.
- Bugs got fixed in the tools as a result of interactions, and pairwise partnering between producers and

consumers were discussed.
- Next Plugfest planned for June, aligning with OASIS OpenC2 event.

Next Steps
- Update 2019 White Paper

- Continue to collect tools. Put a comment in the document, so it can be added.
- SWID: http://tiny.cc/SWID

- SPDX: http://tiny.cc/SPDX

- CycloneDX: http://tiny.cc/CycloneDX

- Continue population of examples via Plugfests and Comparison
- Reference corpus of examples illustrated with each format and encodings

- Planning underway for next Plugfest in June, aiming to add more binaries as starting points.

- Finalize Playbooks

- Consumer Playbook Draft: https://docs.google.com/document/d/1Ae0l1MDS8m1on58e8mdVIA9NujzPD0k5j352VlDZr9I/edit

- Supplier Playbook Draft: https://docs.google.com/document/d/1Ae0l1MDS8m1on58e8mdVIA9NujzPD0k5j352VlDZr9I/edit

- Collaboration with medical and any new PoCs, provide feedback of gaps to framing
- Document formats and tooling for VEX

Volunteers interested on working on above areas? Feedback on proposed approach?

http://tiny.cc/SWID
http://tiny.cc/SPDX
http://tiny.cc/CycloneDX
https://docs.google.com/document/d/1Ae0l1MDS8m1on58e8mdVIA9NujzPD0k5j352VlDZr9I/edit
https://docs.google.com/document/d/1Ae0l1MDS8m1on58e8mdVIA9NujzPD0k5j352VlDZr9I/edit

More Info...
Meetings: Weekly, next meeting scheduled for May 7 at 11am EST. Contact leads
to be added to meeting invite

Mailing List: ntia-sbom-formats@linuxfoundation.org

Subscribe at: https://lists.linuxfoundation.org/mailman/listinfo/ntia-sbom-formats

Shared Drive:
https://drive.google.com/drive/folders/1KAQ7AWlWMKcSFnRc_S-7XB76xFRRWLmT

mailto:ntia-sbom-formats@linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/ntia-sbom-formats
https://drive.google.com/drive/folders/1KAQ7AWlWMKcSFnRc_S-7XB76xFRRWLmT

Backup Material

SBOMs Examples (Work in Progress)

SPDX

- https://github.com/lfscanning - LF projects source packages.
- https://github.com/swinslow/spdx-examples - source & binary examples

CycloneDX

- https://github.com/CycloneDX/sbom-examples - binary examples

SWID

- Time 1.9 from Red Hat distro - binary example

https://github.com/lfscanning
https://github.com/swinslow/spdx-examples
https://github.com/CycloneDX/sbom-examples
https://drive.google.com/drive/u/0/folders/1Z364N234jrs36pjDT8xcS5hUGjRmMTN9

Current SBOM Options Available

SPDX CycloneDX SWID

File formats: .xls, .spdx,
.rdf, .json, .yml, .xml

File formats: .xml

File formats: .json, .xml

Information Collected per Tool

Support Produce?, Consume?,
Transform?

Functionality

Location Website:
Source:

Installation
instructions

How to use

Versions
Supported

 Tool Template

Support Produce (Analyze, Edit), Consume(View,Diff,Import),
Transform(Translate, Merge, Tool Support)

Functionality FOSSology is an open source license compliance software
system and toolkit allowing users to run license, copyright and
export control scans from a REST API.
As a system, a database and web UI are provided to provide a
compliance workflow.
As part of the toolkit multiple license scanners, copyright and
export scanners are tools available to help with compliance
activities.

Location Website: https://www.fossology.org/
Source: https://github.com/fossology

Installation instructions https://www.fossology.org/get-started/

How to use https://www.fossology.org/get-started/basic-workflow/

Versions Supported: SPDX 2.1, SPDX 2.2

Example: FOSSology

https://www.fossology.org/
https://github.com/fossology
https://www.fossology.org/get-started/
https://www.fossology.org/get-started/basic-workflow/

Tool Support for Different SBOM Formats
SPDX SWID

http://tiny.cc/SWIDhttp://tiny.cc/SPDX

CycloneDX

http://tiny.cc/CycloneDX

https://docs.google.com/document/d/1A1jFIYihB-IyT0gv7E_KoSjLbwNGmu_wOXBs6siemXA/edit
https://docs.google.com/document/d/1oebYvHcOhtMG8Uhnd5he0l_vhty7MsTjp6fYCOwUmwM/edit
http://tiny.cc/SWID
http://tiny.cc/SPDX
https://docs.google.com/document/d/1biwYXrtoRc_LF7Pw10TO2TGIhlM6jwkDG23nc9M_RiE/edit
http://tiny.cc/CycloneDX

Areas to Learn: Generalized vs. Industry-Specific Requirements

• Generalized requirements for code: software, firmware, embedded
• Where do SBOM requirements of firmware/embedded diverge from IT?

• Ex: Auto industry, Energy, Medical devices with firmware and embedded

• Where do SBOM requirements for licensed/proprietary third party components
diverge from third party open source components?

• Lessons Learned and Best Practices for SBOM IP
• Open Formats
• Content may be delivered under NDA
• Content must be capable of transfer to final-goods-assembler without copyright restriction

• Assumption: NDAs carry the weight of confidentiality terms

• Why this matters: SBOM is an intermediary phase of the data
• Operational requirement for data to be ingested by enterprise processes and platforms
• Ex: CMDB, SAM, SOC
• Configuration management can’t become a “derivative work” and function as intended.

