
Draft Use Cases Deliverable- Sept 3, 2019

Roles and Benefits for SBOM Across the Supply Chain
Use Cases Working Group

Introduction 1
The Software Supply Chain 3
About this document: Goals and Methodology 3

Perspective: Produce Software 4

Perspective: Choose Software 6

Perspective: Operate Software 8

Ecosystem, Network Effects, and Public Health Benefits of SBOM 9
Accelerated Vulnerability Management 10
Amplified “Herd Immunity” 11
Selecting for Better Suppliers (a/k/a “Survival of the fittest supply”) 12
Weathering Suppliers going away / Orphans 13

Appendix I Related efforts that explicitly or implicitly highlight the value of SBOM 14

Appendix II - Assurance and Confidence Use Cases and Elements of an SBOM 18

Appendix III - About the authors of this document 20

Introduction

Software is everywhere. Like steel and concrete, software increasingly plays a foundational role
in a modern, connected society and like those other building materials, how and with what
ingredients the building materials are created often matters. Software permeates banking,
healthcare, utilities, emergency services, national defense, government systems, and the like.
The software includes operating systems, firmware, and embedded systems within our gadgets,
devices, IoT, and other machines. And just like these physical goods, software has a supply
chain that may need to be understood and managed by an organization dependent on that
software.

Most software includes other software. Software changes and evolves over time due to
optimization, new features, security fixes, and so forth. As a result, software producers

1

Draft Use Cases Deliverable- Sept 3, 2019

throughout the supply chain have to continually evaluate how changes might impact their
software. This includes changes to 3rd-party components used to compose software. How can
organizations make confident, informed decisions? How can they manage the complexity of
their software supply chain in a sustainable manner? In a complex supply chain, roles can blur.
For simplicity, we will initially describe the software supply chain from three perspectives:

● I produce software - the person/organization that creates a software component or
software for use by others [write/create/assemble/package]

● I choose software - the person/organization that decides the software/products/suppliers
for use [purchase/acquire/source/select/approve]

● I operate software - the person/organization that operates the software component
[uses/monitor/maintain/defend/respond]

This document describes the benefits of having a Software Bill of Materials (SBOM) from all
three perspectives, summarized in the following table:

 Perspective on Software

Benefit Produce Choose Operate

Cost Less unplanned,
unscheduled work

More accurate total
cost of ownership

More efficient
administration

Security Risk Avoid known
vulnerabilities

Easier due diligence Faster identification
and resolution.

Know if and where
specific software is

affected

License Risk Quantify and
manage licenses

and associated risk

Easier due diligence More efficient,
accurate response to

license claims

Compliance Risk Easier risk
evaluation.

Identify compliance
requirements earlier

in lifecycle

More accurate due
diligence, catch
issues earlier in

lifecycle

Streamlined process

High Assurance
(See Appendix II)

Make assertions
about artifacts,
sources, and

processes used.

Making informed,
attack-resistant
choices about
components.

Validate claims under
changing and
adversarial
conditions.

2

Draft Use Cases Deliverable- Sept 3, 2019

The Software Supply Chain
Even before software was widespread, organizations thought about multi-stage production
processes through the lens of the supply chain: each stage of production takes inputs from a
previous stage and adds their own skills and contributions to produce outputs that a subsequent
stage can use. At one end are the most basic components, such as raw materials, and at the
other end are the final users or consumers of the product. Each link in the well-functioning
supply chain provides an opportunity to ask crucial questions, such as “Does this input meet my
quality standards?” and “Am I using the correct input, or should I use something else?”

It’s useful to think of modern-day software development as a supply chain:

● Software developers write code that fulfills a need, then make it available freely or
commercially.

● Other developers with similar needs find that code and include it in their own software.
● At some point, a product manufacturer assembles software components into a product.
● End users acquire and operate the finished product.

The supply chain is a simple model of how products are made, but it doesn’t answer every
possible question. What happens when something goes wrong with a link in the chain?

In the world of physical goods, “upstream” parts might be recalled or upgraded, and the
relationships in the supply chain might be strong enough to make sure that any necessary
changes are made “downstream.”

In the world of software, the links between dependencies are weaker. Sometimes, there is no
direct commercial relationship between the links. And unlike most physical parts, software
components change constantly. Every participant in the software supply chain is continually
weighing choices and grappling with changes introduced by the release of new software
versions, security vulnerabilities, and shifting requirements. Because of the complex web of
dependencies in software supply chains, any change can have far-reaching effects.

About this document: Goals and Methodology
This document was drafted by the Use Cases Working Group as part of NTIA’s multistakeholder
process on software component transparency. The group was initially driven by several 1

1 Link to other SBOM docs

3

Draft Use Cases Deliverable- Sept 3, 2019

observations. First, participants noted that SBOMs (and things like them) were already in use
today, and thus the existing use cases should be documented and captured. Second,
participants embraced the idea that lack of transparency was a supply chain problem, and any
transparency solution should address the broader software supply chain rather than any single
subset or sector. Third, stakeholders argued that since the benefits of transparency accrue
through different mechanisms across the supply chain, these benefits should be carefully
mapped out. A key aspect of this work was to understand how the efforts of the broader NTIA
initiative could impact the software ecosystem and increase awareness and adoption for the
growing community of those interested in SBOM practices.

The group set out with two goals: to capture the SBOM use cases today to find out what works
and what needs to be improved, and to understand how existing software practices could be
improved by wider adoption of SBOMs. Participants wanted to avoid further reinventing the
wheel at each organization facing their own software supply chain challenges. As noted in
Appendix 1, this work is not happening in a vacuum. There is a growing awareness of the
importance of SBOMs, and many efforts to address it.

Much of this work was inspired by existing industrial and supply chain work. We have adapted 2

the framing of earlier work to better match the structure of today’s software industry and make
the lessons learned more accessible. The group held weekly conference calls to extract
knowledge and debate these use cases. The expertise of working group members was
supplemented by a series of interviews with different actors in the supply chain. Each interview
lasted at least half an hour, and consisted of detailed questions to understand the interviewees’
ideas of the risks, costs, and potential value of software transparency. The group decided to
focus on the points of view of three perspectives (as discussed above) and capture the current
or potential benefits that greater software transparency can provide.

This document is supplemented by two appendices. Appendix I contains references to other
initiatives that explicitly or implicitly acknowledge the value and importance of transparency in
the supply chain. Appendix II contains a discussion of the value from assurance attributes
around SBOMs that may be necessary for certain applications. These higher assurance points
will be addressed in the future work of the NTIA process.

Perspective: Produce Software
Code reuse is an integral part of modern software. In addition to writing their own code,
producers of software routinely integrate third-party code and components into their software.
Organizations that make software continually weigh whether to build components from scratch
or import components from elsewhere. To keep projects moving at high velocity, this decision

2 See, e.g., Deming’s (1986) seminal works on supply chain quality

4

Draft Use Cases Deliverable- Sept 3, 2019

making is often diffused among teams and individual developers. Yet consideration of
components or ingredients in any product is a key piece to producing a high-quality product.

For many organizations, review and vetting of open-source software they choose to include in
their products and services began because of restrictive open-source licenses that put
limitations on distribution. However, it was quickly recognized that open source software
caused security concerns as well. A bill of materials is integral to understanding the supply
chain of any product, and in the software space, it is hard to understand anything about the
supply chain risk without visibility into the underlying components.

A Software Bill of Materials (SBOM) can help a software supplier produce their software in the
following ways:

An SBOM can reduce unplanned, unscheduled work by offering better visibility into the
codebase, which in turn leads to better prioritization and quicker delivery for code updates. For
example, when a new vulnerability emerges, without an SBOM, a software engineering team
would have to review all their software to determine if any of it has a problem. Using an SBOM,
any software that might contain that vulnerability is easily identified. The organization can both
increase the priority of required bug fixes and can save time by not having to further review
identified components and focus more on reviewing the rest of the software..

An organization that tracks components can more easily reduce code bloat. Open source
components in particular are often available in dozens of slightly different versions that perform
the same functions, and each version potentially has different and unique defects. SBOMs
make it easier for an organization to standardize on a common set of components, so any
vulnerability will need to be corrected only on a single component.

More broadly, making it easier for developers to “zoom out” to understand dependencies
within broader, complex projects can facilitate more responsibility and better quality
management. A more systematic approach to code reuse can allow greater confidence in the
overall process and therefore product. An organization can better track needed
experience/expertise for particular teams or products, make sure that potential future
maintenance is supportable, and avoid surprises when downstream customers evaluate the
software.

It enables an organization to know and comply with the license obligations of the
components used. A system that makes licensing policies easy to use can help automate
license compliance.

An SBOM-equipped producer can more easily monitor components for vulnerabilities so the
team can more proactively evaluate and remediate risks. When a new security risk is discovered
by security researchers, identifying whether or not a particular product is potentially vulnerable
can be a drawn-out process. An easily accessible list of components can make this process
much more efficient. Better awareness of components can also shorten the window to reassure
customers, improving customer trust.

5

Draft Use Cases Deliverable- Sept 3, 2019

Sometimes, software components reach their end-of-life (EOL) and are no longer supported by
that upstream supplier, or the supplier disappears entirely. A responsible producer should
actively monitor for this, and plan for contingencies before they arrive. An SBOM enables an
organization to be proactive with their supply chain to identify and implement alternative
solutions.

Tracking components and sub-components can make code easier to review and understand
for developers, simplifying builds and reducing obstacles to getting code into production.
Much of the initial security testing for avoidable harm can happen in-context, as the code is
written/assembled, weeks or months earlier than the alternative. Furthermore, this tracking
enables more situational awareness when an underlying dependency changes. It can also
provide a better understanding of the work and time needed to make a change to the codebase.

Tracking component usage can support strategies like a blacklist of banned components or a
whitelist of preferred components - or both. Blacklists allow companies to avoid components
with known issues, orphaned projects, or that have had a history of having many security
issues. Whitelists, while not as common, allow companies to use trusted third party
components and invest in their use, or have a list of preferred providers. SBOMs can foster a
feedback loop to better develop more informed approved lists based on operational metrics of
suppliers.

An organization can provide an SBOM to its customers or downstream partners to help
assure them that the company is providing a high-quality product that meets customers’ legal
and security needs (see below for how an SBOM can help those who choose and maintain
software). Being proactive can offer a competitive advantage as SBOM adoption increases, and
may ultimately become a common market expectation or requirement. An up-to-date SBOM can
also reassure downstream consumers about the current security status of a product in their
possession.

Perspective: Choose Software
Choosing software includes the selection and acquisition of software products. These processes
differ from one organization to another, but while there are many ways of choosing software,
there are a few well-known steps common to all of them.

Almost any choice of software is a long-lasting commitment, and it is therefore very important
that the decision to acquire one software product or component vs. another is made with
forethought and planning. This acquisition process can be formal or informal, and may include
steps such as reviewing requirements, market surveys, evaluating suppliers and products, and
the purchasing and receiving to actually acquire the software. It is also likely in a typical
organization that several functional teams could be involved, including end users, finance, legal,
and technical support.

6

Draft Use Cases Deliverable- Sept 3, 2019

Consumers of software without an SBOM know there are probably open-source components
inside the code that are not exposed by the software supplier. Those ingredients could include
unsupported (“orphaned”) libraries or components with known vulnerabilities. Malicious
suppliers could hide malware inside components that performed useful functions. An SBOM can
help an organization choose their software and supplying organization in the following ways:

Visibility into underlying components can help identify potentially vulnerable components.
Prior to purchase, an organization can conduct the basic risk analysis to understand what they
are about to put on their systems.

Organizations with a more mature risk process can engage in a more targeted security
analysis process by deciding what code components might raise red flags (such as a
cryptographic library that offers substandard protection) and which components might have
already been vetted by a trusted source.

If the SBOM includes hashes of the components, an organization can verify the sourcing of
third-party components to limit the risk that counterfeit or backdoored components slipped into
the supply chain of the supplier. (While an SBOM may not directly prevent a determined
adversary from interfering with the legitimate source, it can greatly simplify remediation once the
attack is detected--see above.)

Organizations may face regulations or other rules around supply chain sources, and an SBOM
can enable compliance with policies around what must or must not be used in their
organization.

An organization can be made aware of end-of-life components for which future support will
not be available. While these components may not be a risk when the software is first acquired,
any problem found later in the component will most likely not be fixed.

The acquirer will be better able to verify some claims by the supplier about the code base and
its quality. While knowing which components and versions will not answer every question about
the quality and security of software, it can offer some insight into the supplier’s vigilance.

An organization can better understand the software’s integration into existing asset and
vulnerability management systems, lowering the overall cost of ownership and minimizing the
likelihood of risks emerging from poor integration.

An organization can engage in pre-purchase and pre-installation planning for potentially
vulnerable or out of data software that it still intends to purchase. Purchase decisions are made
for many reasons, and the benefits of purchase and use may outweigh the security risks. In this
case, the security team can start to make decisions to treat more at-risk systems differently,
including designing segmented networks or white-listed access systems, and preparing
check-lists for the operational team that will be installing and maintaining the system.

7

Draft Use Cases Deliverable- Sept 3, 2019

Finally, aSBOM provides a market signal that a supplier is thinking about possible risks from its
included components, indicating the supplier is practicing good software development hygiene
and observes at least some best practices. This can have the most marked impact on the
suppliers by rewarding those who invest in security and quality processes.

Choosing software means choosing a supplier, and any choice of a supplier also means
inheriting all of its suppliers as a consequence. Transparency ensures this is a more informed
choice.

Perspective: Operate Software
Once any software package or component is selected and acquired, it must be installed,
configured, maintained, and administered. We group these responsibilities under the category of
“operation.” They vary for different organizations, and could cover a range of potential roles,
ranging from the administrator to the NOC or SOC to an executive in charge of risk or
compliance. These roles may also apply for non-IT packages such as embedded software in an
industrial or OT setting. we have identified two distinct groups of personnel who will be playing
these roles with some examples.

An SBOM can help an organization configure, maintain, and administer its software in the
following ways:

A list of components allows for the easy identification of new vulnerabilities which are
discovered over the lifetime of a piece of software. An SBoM allows an organization to
understand what components are active on its systems and networks. When any new flaw in a
particular component is discovered, the organization can quickly evaluate whether it is using the
component, and therefore whether it is at risk.

Awareness of underlying potentially risky components can drive independent mitigations
while an organization waits for their supplier to assess the actual risk and provide software
updates as needed. Some organizations may decide to take defensive action on their own to
minimize risks from known vulnerable software. Examples of possible actions include
compensating procedural controls, technical isolation of an affected system, or increased
scrutiny of system activity. If a defective software component is not actively supported by the
supplier, or the supplier doesn’t exist anymore, these measures may be the only possible
mitigation.

More broadly, an SBOM allows an operator to make more informed risk-based decisions
about what is on their network, and how to prioritize a response, driven by their own approach to
security and risk. As several participants have put it, an SBOM offers a “roadmap for the

8

Draft Use Cases Deliverable- Sept 3, 2019

defender,” particularly when it comes to vulnerabilities that might be linked to widespread
exploitation and automated tools such as Metasploit.

Careful understanding of third party components can enable alerts about potential end-of-life
(EOL) situations. By combining data from SBOMs with other data sources, an organization can
understand when a component may no longer be supported by its supplier. This will allow that
organization to understand the potential ripple effects for the software using those components,
and make proactive decisions to work with their supplier or seek alternatives.

More information about components can better support compliance and reporting
requirements. In addition to being a more detailed asset inventory, SBOMs support a
requirement to monitor for security risks of deployed systems (e.g. “post market surveillance”)
or a requirement to follow up on security alerts to demonstrate vigilance.

Documented software components can reduce costs through a more streamlined and
efficient administration. Those responsible can quickly identify points of concern, and would
not have to spend time contacting suppliers when they can determine via the SBOM that the
software does not contain a deficient component.

Ecosystem, Network Effects, and Public Health
Benefits of SBOM 3

While this document has thus far
focused on benefits to a specific team,
role, or organization, there are
significant near-term and subsequent
benefits which emerge for the entire
system. If we are all links in a software
supply chain, what are the benefits
unlocked or enhanced for the entire
chain? We know the value of a network
increases when more nodes participate.
We know investments in patient care
help the individual, and that investments
in public health affect the efficiency and
availability of treating all patients. We
know that a vaccination may protect

3 Note to reader: this section will be further reviewed and edited.

9

Draft Use Cases Deliverable- Sept 3, 2019

your child, and that herd immunity requires sufficient inoculation to fend off population risks. So
too, can we explore some of these elements.

Each of the three perspectives outlined above — produce, choose, and operate — considers
the software supply chain as a single narrowly focused stakeholder might see it. In practice,
people and organizations serve multiple roles at a time, and all stakeholders seek additional
benefits from broader, ecosystem-level changes, akin to the effects of vaccination and public
spending on population health. This section explains how SBOM adoption can accelerate
positive trends and encourage good practices that improve the health of the entire software
ecosystem at once.

Several of the following ecosystem-level benefits are described in more detail below:

● Accelerated vulnerability management and response;
● Amplified “herd immunity” through avoidance of elective risks (1 to many);
● Culling of low-quality or abandoned software components; and
● Resilience to supplier churn.

Accelerated Vulnerability Management
In the words of a software operator we interviewed for this project, “we need to know what we’re
defending.” Time is of the essence in vulnerability management, but the timeline for fixing
deployed systems can stretch into months or years when each stakeholder must wait for
disclosure from its upstream suppliers. Accurate SBOMs can collapse this chain of delays to
allow all stakeholders to begin assessing vulnerabilities immediately and measure remediation
performance throughout the supply chain. The following graphic illustrates this effect.

10

Draft Use Cases Deliverable- Sept 3, 2019

Upon the revelation of a new vulnerability, we know that the time-to-exploitation is now
measured in days or weeks. In contrast, the full multi-legged relay race for the supply chain of
defenders measures time-to-remediation in months or even years. More comprehensive and
concurrent supply chain transparency supports earlier identification, simultaneously, at each
stakeholder type across: Compound Parts, Final Goods Assemblers, and Operators. Armed with
this multi-month advanced visibility, work-a-rounds, mitigations, and other corrective actions can
significantly compress adversary advantage - especially at the Operator stage. Of additional
value, downstream dependents, armed with the moment-zero time marker, can begin to
measure relative response times of their suppliers for future supplier choices (See Natural
Selection of Suppliers below).

NOTE: This opportunity is even further super-charged in combination with benefits of NTIA’s
other Coordinated Vulnerability Disclosure working groups where initial patches have been 4

made available prior to any adversary awareness to begin their time-to-exploitation.

Amplified “Herd Immunity”
The notion of herd immunity refers to the idea that coordinated preventive activities can reduce
the risk to individuals in a group, thereby reducing risk to the group overall.

4 A summary of stakeholder-drafted work on CVD, with links to the document is available here:
https://www.ntia.doc.gov/blog/2016/improving-cybersecurity-through-enhanced-vulnerability-disclosure

11

https://www.ntia.doc.gov/blog/2016/improving-cybersecurity-through-enhanced-vulnerability-disclosure

Draft Use Cases Deliverable- Sept 3, 2019

If a single Compound Parts manufacturer avoids a known-vulnerable version of an open source
library in favor of a version that is not vulnerable, then their 100 downstream Final Goods
Assemblers are also not vulnerable, as are each of their 100 customers. In this example, a
vulnerable Compound Part choice could have exposed 10,000 Operators. In contrast, this
earlier, better choice enables immunity on the parts of 10,000. This initial work by a developer
could take minutes, or even less with automated tooling, to avoid a known vulnerability, creating
what Deming would call “better supply.”

Selecting for Better Suppliers (a/k/a “Survival of the fittest
supply”)

You cannot manage what you cannot measure. You cannot protect what you do not know you
have. If we take the inverse, more pervasive transparency inevitably unleashed better
measurement, analysis, and evolutionary continuous improvement.

Inclusion of low-quality or abandoned software components in products is a recurring problem
that can be addressed in part through increased transparency. Some industries, including
healthcare, are already standardizing mechanisms that allow suppliers to offer extra product
details via self-reporting, and buyers are beginning to express strong preferences during
procurement. Increased transparency throughout the supply chain can support a process similar
to natural selection, wherein resource allocation favors the most “fit” entities and culls those that
are not able to compete effectively. In Deming’s words with respect to Toyota’s supply chain,
the goal is to “use fewer and better suppliers of parts.”

When Financial Services began Deming-style Software Supply Chain management around
2013, they began to understand and implement metrics for continuous improvement. For
example, armed with moment-zero of an open source flaw, what is the Mean-time-to-Remediate
(MttR) for Final Goods Assembler A versus B? If Vendor B is consistently fixing new CVEs
within 30 days, but vendor A is taking 9 months, Vendor B is likely to get more budget in future
procurement. Now imagine this up and down the chain. If you are required to produce
increasingly comprehensive SBOMs by potential customers, then you may have to migrate from
Open Source projects who won’t supply them (or orphaned projects) toward projects that will.
Further, if there are 10 logging frameworks one might choose from, perhaps those with the best
Mean-time-to-Respond will win a larger share of adoption and/or funding from initiatives devoted
to promoting better security.

12

Draft Use Cases Deliverable- Sept 3, 2019

Weathering Suppliers going away / Orphans
Increased transparency via SBOM can help stakeholders address the acute problem of supplier
extinction. Given a process that supports selection of better software over time, as described
above, a natural consequence is that not all elements of the supply chain will survive; this can
be thought of as supply extinction. Inevitably, companies go out of business or are acquired,
re-acquired, and abandoned. Even at healthy, sustainable companies, product lines reach End
of Life (EoL). Open source projects lose momentum or maintainers.

In today’s software supply that generally operates without SBOM, dependents may be wholly
reliant on suppliers to notify them of new vulnerabilities. In cases of supplier extinction, there
may be no notification - or the notification may be a headline of active exploitation and harm in
the wild. In contrast, a user of an SBOM-enabled component is better informed and empowered
to make appropriate decisions. Without needing a direct communication from the supplier about
EOL status, each downstream user can self-assess potential impact, irrespective of the financial
health or current name/brand of the original creator.

Some industries can use existing trust networks to become collectively more resilient to supply
extinction. Trusted third parties such as industry information sharing & analysis centers (ISACs)
that already play central roles can collect SBOMs to ease the burden of information
management across suppliers and operators. Regulated industries such as healthcare could
more swiftly issue notifications about vulnerable devices, even long after the device maker was
no longer in existence.

Combined/Cumulative Value

The above benefits can, in turn, further reinforce each other for greater amplification and
network effects. Taken together, they can promote an ecosystem of fewer but better maintained
projects, with benefits compounding down the supply chain to larger parts, final goods, and the
ultimate purchasers or adopters and users. What was once even hundreds of thousands of
opaque, weaker, vulnerable systems for the herd vulnerability could now be a more transparent,
resilient, and maintainable herd immunity - less prone to accidents and adversaries.

13

Draft Use Cases Deliverable- Sept 3, 2019

Appendix I Related efforts that explicitly or implicitly
highlight the value of SBOM

The work of the NTIA initiative does not occur in a vacuum. There are a number of key works
across the ecosystem that have advanced or highlighted the importance of an SBOM at various
points in the supply chain. The following is a list of related projects that are included to
emphasize the growing support and importance of SBOM. It is not an exhaustive list and the
projects below are not endorsed by this group.

BSA Framework for Secure Software.
This industry-drafted framework offers guidance on secure development of software, security
capabilities of software, and a secure lifecycle, citing standards and other authoritative
guidance. It makes repeated references to the importance of tracking third party code, including
advising “To the maximum feasible through the use of manual and automated technologies,
subcomponents integrated in third party components are documented, and their lineage and
dependencies traced.”

Building Security in Maturity Model
BSIMM (Building Security in Maturity Model) is a large group of software developers in
academia, government, and industry that benchmark best software development practices.
They create practices that organizations can benchmark themselves against and assess where
they are relative to their peers in their industry or overall. They are up to version 9 and contain
several SBOM related requirements:

SR2.4 "Identify open source"
SR3.1 "Control open source risk"
CMVM2.3 "Develop an operations inventory of applications"
SFD3.2 "Require use of approved security features and frameworks"
SE3.6 "Enhance application inventory with operations bill of materials"

CISQ Trustworthy System Manifesto
The Council on IT Software Quality (CISQ) has published the “CISQ Trustworthy System
Manifesto” on holding senior executives accountable for cybersecurity. Section III is "Traceable
Properties of System Components" which has requirement #2 “Evidence of provenance and
trustworthiness should be carried forward with components and shared across the supply chain”
which contains in the description:

“When developers incorporate open source components, external APIs, or
microservices, they should document their source and related data for inclusion in a
System Bill of Materials (SBOM)."

14

https://www.bsa.org/files/reports/bsa_software_security_framework_web_final.pdf
https://www.bsimm.com/content/dam/bsimm/reports/bsimm9.pdf
https://it-cisq.org/wp-content/uploads/2018/10/CISQ-Trustworthy-Systems-Manifesto.pdf
https://it-cisq.org/wp-content/uploads/2018/10/CISQ-Trustworthy-Systems-Manifesto.pdf

Draft Use Cases Deliverable- Sept 3, 2019

FDA Premarket Guidance
The US Food and Drug Administration (FDA) has published draft Pre-Market Guidance for
medical device manufacturers seeking FDA certification. This guidance maintains that: "The
device design should provide a CBOM in a machine readable, electronic format to be consumed
automatically" where Cybersecurity Bill of Materials (CBOM) is defined as " a list that includes
but is not limited to commercial, open source, and off-the-shelf software and hardware
components that are or could become susceptible to vulnerabilities."

FS-ISAC Third Party Governance
The Financial Section Information Sharing and Analysis Center (FS-ISAC) published
“Appropriate Software Security Control Types for Third Party Service and Product Providers” in
2015. It includes Control Type 3B, “A Bill of Materials (BOM) for Commercial Software to Identify
Open Source Libraries Used”.

ISO

ISO/IEC 27002:2005 and 27002:2013 have relevant sections that highlight the importance of
best practices to ensure adherence to information security control objectives for an organization.
The perspectives identified in this document can be aligned this international standard to show
its relevance to a broad number of industries that use/produce information systems.

Make Software ISO/IEC 27002:2005, 9.2.6, “Secure Disposal
or Re-use of Equipment”;
Section 10.4, “Protection against Malicious
and Mobile Code”;
Section 15.1.2. “Intellectual Property
Rights(IPR).”
ISO/IEC 27002:2013, Section 14: System
acquisition, development and maintenance -
14.2 Security in development and support
processes

Choose Software ISO/IEC 27002:2013, Section 14: System
acquisition, development and maintenance
15: Supplier relationships - 15.1 Information
security in supplier relationships

Operate Software ISO/IEC 27002:2005, Section 5.1.1,
“Inventory of Assets.” and Section 10.4,

15

https://www.fda.gov/medical-devices/digital-health/cybersecurity#guidance
https://www.fsisac.com/sites/default/files/news/Appropriate%20Software%20Security%20Control%20Types%20for%20Third%20Party%20Service%20and%20Product%20Providers.pdf

Draft Use Cases Deliverable- Sept 3, 2019

“Protection against Malicious and Mobile
Code”; Section 15.1.2. “Intellectual Property
Rights(IPR).”
Section 9.2.7, “Removal of Property”; Section
9.2.6, “Secure Disposal or Re-use of
Equipment”; Section 10.7.2, “Disposal of
Media.”
Section 13.2, “Management of Information
Security Incidents and Improvements”;
Section 10.10.2, “Monitoring System Use”;
Section 15.2.2, “Technical Compliance
Checking”;

Linux Foundation OpenChain
The Linux Foundation OpenChain project is on the use of open source and contains: “A
process exists for creating and managing a FOSS component bill of materials which includes
each component (and its Identified Licenses) from which the Supplied Software is comprised”

Manufacturers Disclosure Statement for Medical Device Security
The Manufacturer Disclosure Statement for Medical Device Security (MDS2) was originally
developed by the Healthcare Information and Management Systems Society (HIMSS) and the
American College of Clinical Engineering (ACCE), and then standardized through a joint effort
between HIMSS and the National Electrical Manufacturers Association (NEMA). The MDS2 form
provides medical device manufacturers with a means for disclosing to healthcare providers the
security related features of the medical devices they manufacture.

MITRE Deliver Uncompromised
MITRE, in its report on the national security supply chain, “Deliver Uncompromised”
recommends SBOM’s as part of supply chain integrity. It notes, “If done properly, an SBOM can
estimate the overall risk of the ensemble of software elements based on the risk of the individual
elements.”

NIST’s Mitigating the Risk of Software Vulnerabilities by Adopting a Secure Software
Development Framework (SSDF)
A 2019 draft white paper recommends core set of high level secure software development
practices. Among these, it recommends that organizations seeking to protect their software
“Create and maintain a software bill of materials (SBOM) for each piece of software stored in the
repository.”

OWASP Component Analysis Project

16

https://wiki.linuxfoundation.org/_media/openchain/openchainspec-current.pdf
https://www.nema.org/Standards/Pages/Manufacturer-Disclosure-Statement-for-Medical-Device-Security.aspx
https://www.nema.org/Standards/Pages/Manufacturer-Disclosure-Statement-for-Medical-Device-Security.aspx
https://www.nema.org/Standards/Pages/Manufacturer-Disclosure-Statement-for-Medical-Device-Security.aspx
https://www.mitre.org/sites/default/files/publications/pr-18-2417-deliver-uncompromised-MITRE-study-8AUG2018.pdf
https://csrc.nist.gov/CSRC/media/Publications/white-paper/2019/06/07/mitigating-risk-of-software-vulnerabilities-with-ssdf/draft/documents/ssdf-for-mitigating-risk-of-software-vulns-draft.pdf

Draft Use Cases Deliverable- Sept 3, 2019

This industry expert group’s guidance on component analysis recommends “Contractually
require SBOMs from vendors and embed their acquisition in the procurement process” and a list of
best practices using the SBOM to improve security

SAFECode Managing Security Risks Inherent in the Use of Third party Components
Industry group SAFECode drafted a white paper capturing the collective knowledge on the
benefits and challenges of managing third-party code risk in product development.

Software Heritage
Software Heritage is a non profit initiative actively supported by a large number of organizations
—software, systems and tool vendors, IT users, academic and governmental institutions. It is
building a universal archive of software source code, as a common infrastructure catering to a
variety of use cases from industry to science and culture.
One of the use cases specifically listed on their mission statement is source code tracking for
industry: “Because industry cannot afford to lose track of any part of its source code, we track
software origin, history, and evolution. Software Heritage will provide unique software
identifiers, intrinsically bound to software components, ensuring persistent traceability
across future development and organizational changes.”
These intrinsic identifiers are based on cryptographic signatures, have a precise formal
definition and are already available for the more than 10 billions of artefacts stored in the
Software Heritage archive. They are an essential building block for ensuring integrity of a
source code base, and are currently being used by some major industry players to implement a
part of their SBOM workflow, related to source code distribution obligations, as well as from the
Wikidata community.

17

https://www.owasp.org/index.php/Component_Analysis#Software_Bill-of-Materials_.28SBOM.29
https://safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://cacm.acm.org/magazines/2018/10/231366-building-the-universal-archive-of-source-code/fulltext
https://www.softwareheritage.org/support/testimonials/
https://www.softwareheritage.org/mission/industry/
https://www.softwareheritage.org/mission/industry/
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html#persistent-identifiers
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html#persistent-identifiers
https://archive.softwareheritage.org/
https://archive.fosdem.org/2018/schedule/event/outsourcing_distribution_requirements/
https://www.wikidata.org/wiki/Property:P6138
https://www.wikidata.org/wiki/Property:P6138

Draft Use Cases Deliverable- Sept 3, 2019

Appendix II - Assurance and Confidence Use
Cases and Elements of an SBOM

The basic SBOM described in this document and related efforts can offer many benefits, as
discussed above. However, some use cases may require more information about the software
or the SBOM itself. Beyond the components, the producer, selector, or operator may want to
know more about the components and their creators, how the components were assembled, or
how the SBOM itself was compiled. Organizations that would suffer dire consequences from
allowing maliciously altered or contaminated software may want these further elements.

Provenance of an SBOM is the term of art for having information about the chain of custody of
the software and all of the constituent components that comprise that software, capturing
information about the authors and locations from where the components were obtained.
Whether a component comes directly from the supplier’s distribution site or some other location
can be a concern for some organizations. Similarly, understanding the exact identity of the
supplier can help an organization establish where to go for updates or to communicate about
bugs or enhancements. Finally, access to authorship allows organizations to correlate their
experience with components to the creators and rank their internal preferences through
reputation-like scoring of providers of software.

Pedigree of an SBOM is the term of art for having information on all of the components that
have come together to make a piece of software and process under which they came together.
This can include details beyond components, such as compiler options. For example,
understanding whether compilation options invoking ASLR were used or not used indicates that
the resultant piece of deployable code is hardened against certain types of attacks.
Understanding of the process used in taking the source code and incorporated components and
libraries to formulate the resultant executable is an important source of insight for those who
need to know what selection of options were used in creating the executable software.

Integrity of the SBOM refers to the use of cryptographic techniques to indicate that the SBOM
hasn’t been altered since written by its author or if there was a modification it indicates that
alteration by some subsequent SBOM author. Being able to determine the SBOM’s integrity
can help, for example, in situations where there is concern about whether an adversary may be
purposefully trying alter the SBOM to mislead those using them for analysis of vulnerabilities. If
someone edits the SBOM to indicate it has a later, non-vulnerable version of a component, the
organization will be left susceptible to attacks against that vulnerability even though the altered
SBOM indicates they are using a non-vulnerable version. Similarly, alteration of the authorship

18

Draft Use Cases Deliverable- Sept 3, 2019

or source information would undermine the Provenance of the SBOM or alteration of the details
of the formulation choices would undermine the Pedigree of the SBOM.

These three SBOM features can supplement the benefits above to provide concrete security
benefits, particularly for organizations that face active threats to their supply chain from
determined adversaries. Future work will explore these potential SBOM use cases, and map
them to specific elements.

19

Draft Use Cases Deliverable- Sept 3, 2019

Appendix III - About the authors of this document
This document was drafted by an open working group convened by the National
Telecommunications and Information Administration in a multistakeholder process, including the
following individuals and organizations: John Banghart (Venable), Slava Bronfman (Cybellum),
Josh Corman (PTC), Chris Gates (Velentium), Charlie Hart (Hitachi), Audra Hatch, Bob Martin
(MITRE), Mike Powers (Christiana), Ben Ransford (Virta Labs), Vijay Sarvepelli (SEI), Duncan
Sparrell (sFractal Consulting), Tim Walsh (Mayo) ...

Others participated, but do not wish to be named. Input into this document included numerous
interviews, creation of use cases, and input from the Healthcare PoC.

20

