The Clock-Proxy Auction: A Practical Combinatorial Auction Design

Lawrence M. Ausubel, Peter Cramton, Paul Milgrom
University of Maryland and Stanford University
Introduction

- Many related (divisible) goods
 - Airport slots (time, airport)
 - Spectrum (bandwidth, location)
 - Electricity (duration, location, strike price)
 - Financial securities (duration)
 - Emissions (duration, type)

- A practical combinatorial auction, as an alternative to the simultaneous ascending auction (SAA)
Application: Spectrum Auction

- Trinidad and Tobago (23 June 2005)
 - Clock determines
 - Two license winners
 - Minimum price of bandwidth ($/block)
 - Proxy round determines size of licenses and specific band plan
Clock Auction

- Auctioneer names prices; bidders name only quantities
 - Price adjusted according to excess demand
 - Process repeated until market clears

- No exposure problem (package auction)
A procedure for package bidding

- Bidders input their values into “proxy agents”
- Proxy agents iteratively submit package bids, selecting best profit opportunity according to the inputted values
- Auctioneer selects provisionally-winning bids according to revenue maximization
- Process continues until the proxy agents have no new bids to submit
Clock-Proxy Auction

- A clock auction, followed by a “final round” consisting of a proxy auction
 - Bidders directly submit bids in clock auction phase
 - When clock phase concludes, bidders have a single opportunity to input proxy values
 - Proxy phase concludes the auction
Clock-Proxy Auction

- All bids are kept “live” throughout auction (no bid withdrawals)
- Bids from clock phase are also treated as package bids in the proxy phase
- All bids are treated as mutually exclusive (XOR)
- Activity rules are maintained within clock phase and between clock and proxy phases
Advantages of Clock-Proxy Auction

- **Clock phase**
 - Simple for bidders
 - Provides price discovery
 - Interdependent values
 - Economize on package evaluation costs

- **Proxy phase**
 - Efficient allocations
 - Competitive revenues
 - Reduces opportunities for collusion
Clock Auction
Practical implementation of the fictitious “Walrasian auctioneer”

- Auctioneer announces a price vector
- Bidders respond by reporting quantity vectors
- Price is adjusted according to excess demand
- Process is repeated until the market clears
Simultaneous Clock Auction

- **Strengths**
 - Simple for bidders
 - Provides highly-usable price discovery
 - Yields similar outcome as SAA, but faster and fewer collusive opportunities
 - A package auction without complexity

- **Weaknesses**
 - Limits prices to being linear
 - Therefore should not yield efficient outcomes
Recent Clock Auctions

- EDF generation capacity (virtual power plants)
 - 16 quarterly auctions (Sep 2001 – present)
- Electrabel generation (virtual power plants)
 - 7 quarterly auctions (Dec 2003 – present)
- Ruhrgas gas release program
 - 3 annual auctions (2003 – present)
- Trinidad and Tobago spectrum auction
 - 1 auction (June 2005)
- Federal Aviation Administration airport slot auction
 - 1 demonstration auction (Feb 2005)
- UK emissions trading scheme
 - World’s first greenhouse gas auction (Mar 2002)
- GDF and Total gas release program
 - 2 auctions (Oct 2004)
Recent Clock Auctions

- New Jersey basic generation service
 - 5 annual auctions (2002 – present)

- Texas electricity capacity
 - 16 quarterly auctions (Sep 2001 – present)

- Austrian gas release program
 - 3 annual auctions (2003 – present)

- Nuon generation capacity
 - 1 auction (September 2004)
EDF Generation Capacity Auction

EDF
Electricité de France

MDI
market design inc.
Typical EDF Auction

- Number of products
 - Two to four groups (baseload, peakload, etc.)
 - 20 products (various durations)

- Number of bidders
 - 30 bidders
 - 15 winners

- Duration
 - Eight to ten rounds (one day)

- €300 million in value transacted in auction
Electrabel VPP Capacity Auction
Typical Electrabel Auction

- **Number of products**
 - Two groups (baseload, peakload)
 - 20 products (various durations and start dates)

- **Number of bidders**
 - 14 bidders
 - 7 winners

- **Duration**
 - Seven rounds (*one day*)

- **€100 million in value transacted in auction**
Issue 1: Discrete bidding rounds are helpful for maintaining legally-binding bids, but they can yield slow auctions or “overshoot”

SOLUTION: Intra-round bids: If the (end) price of Round 3 is €19,000 and the (end) price of Round 4 is €19,500 for baseload, and if the (end) price of Round 3 is €10,300 and the (end) price of Round 4 is €10,600 for peakload, then bidders in Round 4 submit demand curves for all price pairs from (€19,000 , €10,300) to (€19,500 , €10,600).
1 Product – Dealing with Discreteness

Closing Price:
- P6
- P5
- P4
- P3
- P2
- P1

Overshoot
- Round 6
- Round 5
- Round 4
- Round 3
- Round 2
- Round 1

Price

Supply

Aggregate Demand

MW
1 Product introducing intra-round bidding
1 product – Individual bids with intra-round bidding
1 product – Aggregate demand with intra-round bidding
Sample (redacted) data 1
Issue 2: Treatment of bids which would make aggregate demand < supply

- Example: For a particular item, demand = supply, but the price of a complementary item increases. A bidder wishes to reduce its demand
 - Naive approach: Prevent the reduction

- Example: For a particular item, demand > supply, but demand < supply at next increment
 - Naive approach: Ration the bidders
Issue 2: Treatment of bids which would make aggregate demand < supply

- Example: For a particular item, demand = supply, but the price of a complementary item increases. A bidder wishes to reduce its demand
 - Difficulty: Creates an exposure problem

- Example: For a particular item, demand > supply, but demand < supply at next increment
 - Difficulty: Creates an exposure problem
Issue 2: Treatment of bids which would make aggregate demand < supply

- **Example:** For a particular item, demand = supply, but the price of a complementary item increases. A bidder wishes to reduce its demand
 - Our approach: Allow the reduction

- **Example:** For a particular item, demand > supply, but demand < supply at next increment
 - Our approach: No rationing
Issue 2: Treatment of bids which would make aggregate demand < supply

- Bids in clock phase are treated as package bids
- Thus, our clock auctions are, in fact, combinatorial auctions

- Advantage: No exposure problem

- Disadvantage: Potential significant undersell
 (*But not a problem in the clock-proxy auction, since clock phase followed by a final proxy round*)
Issue 3: Activity rules

- Prevent a bidder from hiding as a “snake in the grass” to conceal its true interests

- Standard approaches:
 - No activity rule (laboratory experiments)
 - Monotonicity in quantities (SAA and clock auctions in practice)
Issues in Implementing Clock Auctions

Issue 3: Activity rules

- Revealed-preference activity rule (advocated here)

- Compare times s and t ($s < t$),
 Prices: p^s, p^t Demands: x^s, x^t

 - At time s, x^s is better than x^t: $v(x^s) - p^s \cdot x^s \geq v(x^t) - p^s \cdot x^t$
 - At time t, x^t is better than x^s: $v(x^t) - p^t \cdot x^t \geq v(x^s) - p^t \cdot x^s$
 - Adding inequalities yields the RP activity rule:

 \[(RP) \quad (p^t - p^s) \cdot (x^t - x^s) \leq 0.\]
Issue 3: Activity rules

- Revealed-preference activity rule (advocated here)

- Bid placed at time t must satisfy (RP) with respect to its prior bids at all prior times s ($s < t$):

$$\text{(RP)} \quad (p^t - p^s) \cdot (x^t - x^s) \leq 0.$$

- One can also apply a “relaxed” RP in proxy phase (with respect to bids in the clock phase)
Proxy Auction
Package Bidding

- Package bidding often motivated by complements
- Even without complements, package bidding may improve outcome by eliminating “demand reduction”
 - In SAA, bidders may have strong incentives to reduce demands in order to end auction at low prices
Ascending Proxy Auction

- Each bidder reports its values (and constraints) to a "proxy agent", in a sealed-bid round
- The proxy agents bid in an auction in "virtual time"
- The proxy agent’s rule: submit the allowable bid that, if accepted, would maximize the bidder’s payoff (evaluated according to its reported values)
- The virtual auction ends after a round with no new bids by the proxy agents
The coalitional form game is \((L, w)\), where...

- \(L\) denotes the set of players.
 - the seller is \(l = 0\)
 - the other players are the bidders

- \(w(S)\) denotes the value of coalition \(S\):
 - If \(S\) excludes the seller, let \(w(S)=0\)
 - If \(S\) includes the seller, let
 \[
 w(S) = \max_{x \in X} \sum_{i \in S} v_i(x_i)
 \]

- The \(Core(L, w)\) is the set of all profit allocations that are \textit{feasible} for the coalition of the whole and \textit{cannot be blocked} by any coalition \(S\)
Outcomes in the Core

Theorem: The payoff vector resulting from the proxy auction is in the core relative to the reported preferences.

Interpretations:

- Core outcome assures competitive revenues for seller
- Core outcome assures allocative efficiency (ascending proxy auction is not subject to inefficient demand reduction)
Theorem: If \(\pi \) is a bidder-Pareto-optimal point in \(\text{Core}(L, w) \), then there exists a full information Nash equilibrium of the proxy auction with associated payoff vector \(\pi \).

These equilibria may be obtained using strategies of the form: bid your true value minus a nonnegative constant on every package.
Case of Substitutes

- If goods are substitutes, then Vickrey payoff profile is unique bidder-Pareto-optimal point in core.
- Outcome of the ascending proxy auction coincides with outcome of the Vickrey auction.

Diagram

- Core Payoffs for 1 and 2
- Bidder #1 Payoff
- Bidder #2 Payoff
- Vickrey Payoff Vector

Mathematical expressions:
- \(v_1 + v_2 \leq w(L) - w(L \setminus 12) \)
- \(w(L) - w(L \setminus 1) \)
Case of Non-Substitutes

- If goods are not substitutes, then Vickrey payoff profile is not in core

- Ascending proxy auction yields a different outcome from the Vickrey auction (one with higher revenues)
Proxy Auction Avoids Vickrey Problems

- In Vickrey auction:
 - Adding a bidder can reduce revenues
 - Using a shill bidder can be profitable
 - Losing bidders can profitably collude

- Proxy auction avoids these problems
Clock-Proxy Auction
Clock-Proxy Auction

- A simultaneous clock auction is conducted, with a revealed-preference activity rule imposed on bidders, until (approximate) clearing is attained.

- A proxy auction is conducted as a “final round”
 - Bids submitted by proxy agents are restricted to satisfy a relaxed revealed-preference activity rule based on competitive conditions.
 - Bids from clock phase are also treated as “live” package bids in proxy phase.
 - All package bids (clock and proxy) are treated as mutually exclusive, and auctioneer selects as provisionally-winning the bids that maximize revenues.
Relaxed Revealed Preference Activity Rule

- Let \(s \) be a time in clock phase and \(t \) a time in proxy phase
- Package \(S \) is bid on at time \(s \) and \(T \) is bid on at time \(t \)
- \(P^s(S) \) and \(P^s(T) \) package prices of \(S \) and \(T \) at time \(s \)
- \(P^t(S) \) and \(P^t(T) \) package prices of \(S \) and \(T \) at time \(t \)
- At every time \(t \) in the proxy phase, the bidder can bid on the package \(T \) only if (RRP) is satisfied for every package \(S \) bid at time \(s \) in the clock phase

(\text{RRP}) \quad \alpha [P^t(S) - P^s(S)] \geq P^t(T) - P^s(T)

- \(\alpha > 1 \) is parameter (closer to 1 if more competitive environment)
- For \(\alpha = 1 \), price of \(S \) increased more than price of \(T \); otherwise \(S \) would be more profitable than \(T \).

- Alternatively, state RRP as a constraint on valuations reported to proxy:

\[v(T) - P^s(T) \leq \alpha \left(v(S) - P^s(S) \right) \]
Why Not Use the Proxy Auction Only?

- Clock auction phase yields price discovery
- Feedback of linear prices is extremely useful to bidders
- Clock phase makes bidding in the proxy phase vastly simpler
 - Focus decision on what is relevant
 - See what you don't need to consider
 - See what looks like good possibilities
Why Not Use the Clock Auction Only?

- Proxy auction ends with core outcome
 - Efficient allocation
 - Competitive revenues
- No demand reduction
- Collusion is limited
 - Relaxed activity rule means allocation still up for grabs in proxy phase
Advantages of the Clock over the SAA

- Clock auction is a fast and simple process (compared to the simultaneous ascending auction)
 - Only provide information relevant for price and quantity discovery (excess demand)
 - Takes advantage of substitutes (one clock for substitute licenses)
 - Example:
 - proposed 90 MHz of 3G spectrum in 5 blocks: 30, 20, 20, 10, 10
 - clock alternative: 9 or 18 equivalent blocks per region
 - Fewer rounds
 - Get increment increase for all items, rather than having to cycle through over many rounds
 - “Intra-round bids” allow larger increments, but still permit expression of demands along line segment from start-of-round price to end-of-round price
Advantages of the Clock over the SAA

- Clock auction limits collusion (compared to the simultaneous ascending auction)
 - Signaling how to split up the licenses greatly limited
 - No retaliation (since no bidder-specific information)
 - No stopping when obvious split is reached (since no bidder specific information)
 - Fewer rounds to coordinate on a split
Advantages of the Clock Phase

- No exposure problem (unlike SAA)
 - As long as at least one price increases, bidder can drop quantity on other items
 - Bidder can safely bid for synergistic gains
 - Bid is binding only as full package

- Limited threshold problem (unlike ascending package auction)
 - Clocks controlled by auctioneer: no jump bids; large bidder cannot get ahead
 - Linear pricing: small bidders just need to meet price on single item
Clock-Proxy Auction

- Combines advantages of
 - Clock auction
 - Proxy auction

- Excellent price discovery in clock phase simplifies bidder decision problem

- Proxy phase enables bidders to fine-tune allocation based on good price information
Advantages of Clock-Proxy Auction

- **Clock**
 - Take linear prices as far as they will go
 - Simplicity and flexibility for bidders and auctioneer
 - Expand substitution possibilities
 - Minimize scope for collusion
 - No exposure problem; no threshold problem

- **Proxy**
 - Core outcome
 - Efficiency
 - Substantial seller revenues