

SPARK STREET-20181106 NTIA-DISCUSSIONS

 >>: We, um, are looking forward to a productive

afternoon. If you are just joining us here in

Washington, DC or online, um, we had a productive

morning, we heard from the four working groups. The

further materials that were presented are going to be

available on the NTIA website, and I'll send out a note,

once we have everything collected. We are also going

to be posting notes from this discussion, and in a few

days, we will have, in fact, the entire video stream,

so you can re-live the highs and lows of the experience

today. Um, what I wanted to do this afternoon is a few

things. First, tackle some of the questions that we've

heard raised, um, over today's meeting and over the

course of some of the past working group calls, I want

to make sure that we've got a full list, so if there's

anything that we don't have up here, I want to make sure

that we can put it on this sort of new ad hoc agenda,

and then, finally, before the end of the day, I want

to sort of revisit the process. Every NTIA

multi-stakeholder process is a little different, one

of the things that makes this quite unique is we are

all approaching a fairly similar problem, but from

different perspectives, so there's, in the past, the

different working groups have been a little more

orthogonal, a little more independent. Here, there's

a lot more interdependency, so I want to talk through

how the different working groups are working, and then,

finally, we're going to talk about where and when we

will meet in late February, and if we want to have sort

of an intermediate virtual meeting, um, in mid-January,

just to give us an excuse to do some work over the

holidays. I know that you love it when I frame it like

that.

So, um, these were some of the questions that I

flagged and tried to sort of outline before the lunch

break, which is, you know, what are the components of

a software bill of materials, and we may drag Art up

here and Michelle up here to sort of talk about what

they've captured so far. Um, how the data is going to

be shared, so, you know, what is the act of transparency

look like, if you like the framing of software

transparency, how do we make sure that it's protected,

but still effective, where do we store it, can we at

least, we don't have a single way to do it, can we make

it a fairly small list, again, focusing on harmonizing

it, making sure there's a relatively well-trod path

that most vendors are going to follow and most customers

can expect. Third thing I want to talk about is

something that Omar flagged and a few other people

flagged, which is, hey, how does this translate into

the cloud, right? It's 2018, and we're still saying,

but what about cloud? In this case, I think there's

really some value in understanding what makes this very

similar, and what, if anything, um, is different, so

that we should understand how to apply it, and then,

finally, I want to come up with, come back to a question

which has, um, was at the first meeting, and it's going

to be something that we're going to raise for awhile,

which is software bill of materials may be very useful,

but we may need a little other related data as well,

and we don't have to define what that is, but we can

at least start to talk about it, start to talk about

how it'll be pointed to, start to talk about what makes

this data, um, as useful as possible to both vendors

and customers, and so what else do we need, what does

an extra data plan for something like that look like.

So, is there anything that you would like to add to this

list of open questions? And if there's anything that

you say this topic is verbose, and I think it's a waste

of all of our time to talk about it? Josh?

 >>: I think the going beyond column one from the

graphic I pushed around is both necessary, well, three

things, necessary, valuable, and rot with peril. So,

what I'm worried about is I really, personally, want

to figure out how to make those nutrition labels, and

myself as a producer of software, in a sane and

consistent way with the rest of industry, um, but I'm

afraid if we do that, we're going to have to put up some

ground rules, because it might get messy or ugly,

because then we're going to trod into the very territory

we've been tip-toeing around thus far. So, I don't

want to avoid it, but I want to have some constraints

on it, I guess.

 >>: All right. Thanks. Bruce, is your light

on?

 >>: Yeah. Um, this might be communicating

related data, but if it is, I don't think it's clear

from those words. Um, there's requirements for this

to be successful that, at least when we've talked about

it in framing, we've said isn't part of what we're

doing, and one of them is naming. Naming is a huge

problem, and it could be handled independently of this,

but someone needs to do it, and the naming issue is

basically, I'll call it aliases, there's 18 names for

the same thing, okay, we need to know one of the same

thing. Everybody, I mean, all the large manufacturers

have acquired lots of companies, and every time you

acquire something, there's a good chance that the names

are going to change, at least the name of the vendor,

and, um, you know, in order to know that, what you're

dealing with, this has to be handled.

 >>: Great. That's a good thing to make sure

that we get a chance to touch on. Anything else in the

agenda whacking part of the discussion? I think this

is certainly enough to keep us busy. Um, so, again,

for those of you who are watching or listening on the

phone, dial star 1, and that will put you in the queue,

and we will bring you into the conversation here in the

room. Um, so, if we're happy with this, we can dive

in. You want to start with the question of components?

Art?yes?

 >>: There are probably a lot more questions that

go up there. Is that what you're asking for?

 >>: It was more what are the open questions we

want to tackle now, but if there are, I know you have

a whole list in your document.

 >>: Yeah, I was trying to match them up. They

might overlap some. I'm good. They'll come up, if

they come up. So, thank you.

 >>: Great. All right, so, we can, um, start

with something that, since you had the mic last, um,

what are the components, and, you know, is this

something that we want to sort of imagine a phased

build-out of? And is there sort of the, let's focus

on what it takes to get the job done. Um, can you give

us a reminder of sort of how you guys managed to narrow

it down so that you weren't talking about everything?

Michelle, yes?

 >>: Sorry, I just want to ask a clarifying

question, and not to be nit-picky, but components as

we've been talking about them mean actually the

software, um, so, if we could, maybe, put the, I think

one of the things that we've used is SBoM elements or

something like that, um, just for consistency of

language, the components just means something else, I

think.

 >>: That is very good. Thank you. I

appreciate that. So, I think in the discussions that

you've had, and it's also come up in some of the other

groups, you've narrowed it down from a fairly large

spectrum to, um, a number of finite options. Do you

want to sort of put those on the board? Or is that not

a fair characterization?

 >>: Um, I think it's a fair, let's take a shot,

I think. So, um, this is Art talking. So, elements

of an SBoM, we just had a discussion about naming, but

we need, I'm not sure naming can be outside, there needs

to be, um, our minimum viable product had a triple

string of, um, vendor, product name, version, wide open

strings even, which is not a real sound naming thing.

These people have better naming and ID, but I don't see

that being outside of the SBoM, or else I don't know

how you talk about the parts, components, sorry.

 >>: So, the approach that we took, and it's not

necessarily a universal prescription, but we wanted to

be back-compatible, was to look at the CPE naming

conventions and to be able to use whatever the CPE was,

if there was one. If there isn't one, which is often

the case, um, we essentially alias a name that is

congruent to the CPE naming convention, so that if and

when a CVE emerges, it's very likely to be identified

with that name, and that was a kind of practical

approach that anticipating a customer, essentially

anticipating a vulnerability-checking, and that's just

one of the things that you can do.

 >>: Sure, does SPDX or SWID have a comment here?

 >>: So, the other thing that can be, the other

one that's, um, out there is looking at the repo that

the source is coming from, and, um, so the pearl

specification was mentioned last time, package URL, and

that is a way of identifying a component uniquely as

well

 >>: And I noticed that we have, we're lucky, you

mentioned CPE, we have the driver of CPE, Dave

Waltermier, here with us on the phone. Dave, can you

chime in?

 >>: With this identification conversation,

that there's, um, there's a timeliness problem when it

comes to, um, to software identification, and this is

one that's really evident, um, from a CPE perspective.

As some of you may know, we run the national

vulnerability database, where we try to map, um,

vulnerability to vulnerable products, and one of the

challenges that we have is, um, identifiers for

software, CPEs in this case, are generated by our

analysts in the NVD, and this happens after a product

has already been fielded, um, after a vulnerability has

already been discovered in the product, and our

analysts then have to, you know, forensically discover

information in order to try to come up with a name, you

know, for a product. Um, that's way too late in the

software life cycle to actually have a reliable

identifier for the software that we're trying to, um,

to identify. I think where this effort could really

help is by, um, accelerating the identification of

software, so that, um, an identifier is available when

the software is released, before the software is

installed, and have that be a persistent identifier

that can then be mapped to, you know, by a number of

different disciplines, you know, vulnerability

management, you know, being one of those disciplines.

Um, CPE is just really inadequate from that

perspective, we need a better solution.

From this perspective, we've been looking towards

using vendor-provided, um, software information, um,

as part of a longer-term solution, because that's the

only way to assure that, um, you know, property

identification information is provided, um, at the

point of, you know, distribution of that software,

which is where it's really needed, um, you know, and

the formats that we're looking at, you know, around,

you know, SWID tags and SPDX, um, have a potential to

address this problem. Now, at the vendor source, the

problem that I think we're going to run into is if there

are multiple software identifiers for a software

product, um, then we have, um, sort of a multiple

mapping problem, um, which is also then going to

complicate all of the use cases that require some

mapping to software. So, ideally, if there was a

single installed software identifier, um, that's

something that we could map to, um, from the

vulnerability use case. That would certainly simplify

things dramatically. So, I just wanted to throw that

in.

 >>: Thank you. I know you've been thinking

about this for a long time. I've got Josh and then

Kate.

 >>: I feel like we got into CPE and SWID and

SPDX, maybe way too fast. I mean, the bare bones are

library name and a library version, and, you know, maybe

for bonus, if you want some sort of unique checksum that

could replace the version, if you don't have versioning

for more primitive language, but it's basically, like,

what's this thing I'm pulling into my build, or putting

into my software, and which version of it, because

vulnerabilities map to versions, not to projects,

right? Licenses map to projects, which is why that was

acceptable, but vulnerabilities tend to map to one or

more. Um, as far as the plural names thing, you know,

in theory, if we wanted to future-proof this or make

it more robust, you could have an aliases, you know,

kind of field or array of some sort. Um, I think when

we get to the cloud stuff, just because I had the mic

on, um, some of these things need to be looked up often,

in which case there might be a resource to interrogate,

the address of a resource to interrogate, that could

be something like the pearl stuff I haven't looked at

yet, um, but if we're going to try to suture this, and

the room doesn't know this, but if we're going to try

to suture this to the software creation birth moment,

the as-built, then we wouldn't want to do this after

the fact or have NVD assign something later on. So,

the temporal problems come in when we de-couple

software creation from software tagging, right? This

is your born on bar code, you know.

 >>: So, to pick up on that, the element of the

time and when you build it, um, the thing is, you have

multiple people building it, and all of these things

may have the same vulnerability, because they're still

working from the same source, and, so, while you have

one building it one way, another building it another

way, and another building it a third, they're all

belonging to the same upstream, so they still need to

be sort of connected up in some ways rather than just

who's building it, it needs to basically still probably

go back to the source when the source is available.

 >>: And I almost, I also cringe when we say we

have to know the company name. To Bruce's point,

companies get bought and sold all the time or go out

of business. That might be a useful historical

context, but I'm not sure it's the most actionable bit

for our use cases.

 >>: Okay.

 >>: Even names of products had a different name

in the past. I don't know if anyone knows what the name

of it is here, but I bet not anymore than two or three.

Everyone thinks of struts II, but the names of products

change all the time, it's not just the vendor.

 >>: So, this is, there's a temporal aspect of

names. Kate, you seem to imply that name is

insufficient, we actually need some more context data?

 >>: I think if you're looking at what you're

doing at a point in time, I think having the hash

associated with what you're talking about is always

going to be key at this point now, but having the name

and the version information is a starting point for

giving you an indicator to know if you're talking about

the same thing, but the hash that one person's going

to be build is going to be different than a hash another

person is going to build, but we're still talking the

same source, probably still the same vulnerability that

could come into play, just depending, like, say, if it's

a slightly different version of the compiler, it might

come up with a different binary. That's all.

 >>: Omar, then Art.

 >>: Yeah, so, as a consumer, from a vendor

perspective, I agree in the naming convention entirely,

and, of course, the dilemma of acquiring companies,

that's a different thing, but what I wanted to point

out, I like the simplicity of that. The challenge that

I'm facing, at least from my side, even if I say, okay,

this is product X, Acme product version one, two, three,

it's also running open SSL, or I don't know what they

use, and several components, so for me, whenever I

publish that bill of material, it's only product Acme

one, two, three, versus everything else that is three

or four layers down the stream.

 >>: Josh?

 >>: Um, just a clarification on that, this has

not come up yet, we've been debating other points, but

some folks have said is this a flat list, or is it

hierarchical. I, in most of the policy debates I've

had over the last six years on this, you are, might make

Acme one, two, three, bottle of soda, but you'd be

responsible for everything that came in before it, and

in many cases, you can't even build it, if you didn't

have that stuff, but, um, that's why this, that's why

we've oriented our spreadsheet as a relay race, or as

a daisy chain, because if we don't have a consistent

way to communicate downstream dependencies, we'll

never get that line of sight. So, my expectation isn't

that we're just going to say if you're a Siemens medical

device, you're going to have just the pieces you took,

we're going to have to list the pieces you took, plus

the pieces I or someone else gave you, right? So, it's

going to be the superset, and one of the ways is to show

a small post-it incatenated to other small post-its,

which become your master BoM.

 >>: I've got Art and then Dave.

 >>: Quickly, just to go for a moment, so I'm very

happy with the tuple or the triple, I like vendor name,

product name, perhaps the minimum requirement option

to have hashes or other things, the reason I bring up

existing other specs, for instance, an SPDX, when you

think about it for more than 5 minutes, naming is harder

than let everybody make-up three strings and see how

well that works out. It may be functional and useful,

and that's great, and it's a fine place to start. We

already have in the room knowledge about next level of

what you can get to, so we should at least sort of

consider that. Um, and, again, we were talking about

minimum viable, so maybe the hash is, and the more, um,

complex or complicated naming is, um, is at a later

step.

 >>: So, um, Omar talked about sub-components.

Is there anyone here who thinks that we are talking

about something other than a recursive list? That is

when you, yes?

 >>: Someone on the flat, um, a flat Earther

should chime in, a flat SBoM person, because I don't

get that argument well, and I think we should hear that

argument.

(Laughing.)

 >>: I mean --

 >>: You're associating the flat Earth people

with the flat, um, SBoM people.

(Laughing.)

 >>: My understanding is the flat SBoM is I've

got a product that I've acquired somehow, and I have

the sheets of paper that have everything in it, they're

all right there. Actually, I don't really understand

the flat one very well. The hierarchical, relational

one, I think is the right way to go, but --

 >>: Why, I mean, in the real business world, the

question, the question, is what is the technical

maturity of the customer, and, so, you can create some

wonderful, beautiful things, but if the customer's

technical maturity is anything with a CV of a 5 or below

goes, right, and you can very cheaply generate a flat

SBoM that's going to satisfy their security criteria,

that's what the market will do, and, so, I think that

there are elite customers, right, so I would put, like,

a lot of financial sector customers in this bin that

are going to want to do a ton of really fancy stuff,

um, and, you know, companies help them do it, we help

them do it, but it is actually shocking, like, how low

the bar really is, and, so, the strategic question is

would you rather get more adoption of an easier and

flatter thing first and evolve, or wait and come up with

tooling to create, you know, these sort of system

descriptions that more sophisticated customers are

going to make better use of.

 >>: So, I know at the last meeting, we did have

some discussion about should we aim for more

sophisticated or less sophisticated information. I

want to give sort of just two or three very, very quick

responses to this, and then I want to keep going,

because we had some folks on the call. I've got Jim,

I've got Josh, and I've got Mike.

 >>: I think you have to start unsophisticated,

because in order to start at the very highest point,

you have to have all of your suppliers having their SBoM

provided to you in order for you to incorporate that

into, or to have it available in some format, and, so,

there's a chicken and egg problem there.

 >>: Um, Josh?

 >>: Not placing value, just to describe, I

showed a slide that had a Cisco SBoM, it was flat. We

could show the output at every single commercial tool,

they start flat. If it's additional context for people

that want to do variant analysis to see what else might

also have this CVE that hasn't been pulled in yet,

there's definitely additional value there, but the

current state of practice is flat.

 >>: I want to distinguish, I think there's flat,

which is to say there's no information, and then there's

non-recursive, which means I only give you the top level

of what I am shipping and don't give you --

 >>: The dependencies of dependencies show up at

a singular flat format. They are comprehensive.

 >>: It is recursive, but it isn't semantic.

 >>: Recursive without semantic value. So,

let's, and Mike, I want to get to your point on the

maturity of the customer, and then I want to sort of

pop up to this level.

 >>: I was just going to mention that I think

there's, I'm not sure what you were specifically

referring to, Josh, but there's a difference between

the stored version and the display version. You can

always flatten a hierarchical BoM, you cannot unflatten

a flattened BoM, you cannot make something like that

unhierarchical.

 >>: Yeah, a lot of these tools do --

 >>: So --

 >>: They don't show it that way.

 >>: Just to finish the thought, don't foreclose

hierarchical.

 >>: Okay. Um, so, I've got three people

waiting on the phone, but I want to give one more chance,

um, because, Jim, it sounded like you were saying only

top-level includes, not recursive.

 >>: I was saying that initially, that should be

the target.

 >>: I think we need to clarify what flat means.

It either means just the top level, or it means

everything, no matter what level it's at, and those are

two different ways to think of flat.

 >>: I think we're talking about all the

transitive dependencies, but no semantic relationship

between them.

 >>: Well, some people are, and some people

aren't, so we should define it.

 >>: Does everyone like JC's definition, which

is, um, we've got, well, no, because we can still say,

right, there are different, so, flat, JC, can you repeat

this?

 >>: So, all transitive dependencies with no

semantic relationships between them.

 >>: And can we get a term for if you were only

describing the top-level includes, what would we call

that?

 >>: Direct dependencies.

 >>: Okay. So, we have direct dependencies,

which is what the data that you're including is, and

then we've got flat verse hierarchical, which is how

you're given the data. Does everyone feel like that's

a good way of talking about this right now? All right.

We're going to the phones. I've got David, then John,

then Bill.

 >>: So, I was thinking about this transitive

dependency issue, and I'm not certain I actually see

a significant amount of value in capturing transitive

dependencies, if there isn't a semantic relationship

between the dependencies, but I think in general, what

we want is a model that degrades well. So, we want a

model that can support, um, a flat representation,

when, you know, when information about those

dependencies, um, is not available or can't be

published for various reasons, and we want a model that

is capable of expressing, um, the graph of

relationships, um, as an organization can provide that

kind of information, and I don't think that's

impossible, given the current state of things, because,

you know, both SWID tags and SPDX already provide a

fairly rich semantic model, um, for expressing, you

know, that kind of information. Um, so, I don't want,

I think this effort shouldn't sell itself short, I think

we could provide something that is immediately useful

from a flat perspective, while still providing room for

growing with a much more robust, um, you know,

transitive dependency model. I wanted to go also back

to the identification question.

Um, I think there are a bunch of different use

cases in which there are different identification

requirements. Um, one way of looking at identifying

software from a vulnerability perspective is it's not

enough to actually have a tuple, one that would say the

vendor of the product, the name of the product, and the

version, we really need to start getting down to, um,

the sort of package and release level identification

in order for that to be useful, because there's all

kinds of magic that actually happens behind the scenes

when software is being released. Um, some will add

functional patches to software, other will, um, will

add, um, will back-port security fixes into software,

so, um, it's not just that you're getting a unique build

of the software, you're getting, often, a unique

version of the software that doesn't directly align,

um, to, um, the, you know, open source version.

 >>: Dave, you have, um, strong enthusiasm in

here from Lennox Foundation's Kate Stuart, so we've got

at least some support here.

 >>: And, so, I think, you know, we started

before the break talking about all of the various, you

know, use cases in which we need some SBoM-like thing,

and someone even brought up the idea of, you know, do

we still call this an SBoM. I think one of the

challenges that we have is sort of a lack of vocabulary

to talk about the various formats that we need to

satisfy various use cases. We're calling everything

an SBoM, but what we're really talking about are really

a handful of different things that are needed to support

different use cases. We need, um, we need meta data

about installed software, we need providence

information about how, um, you know, software is

assembled and built, you know, that includes license

information, and these all satisfy different use cases,

different stakeholder groups. Maybe we should be

talking a little bit about, um, what those different

stakeholder groups are and what information they

actually need, and maybe start talking more specific

about the specific data bundles that are needed to

support those use cases. Just a thought.

 >>: Excellent. I'm looking over at the chairs

of the use cases working group, they don't have to

comment now, I'm just, we can talk about having that,

folding that into their role.

 >>: I'm sorry, that was a bunch. I didn't have

a chance to jump in earlier.

(Laughing.)

 >>: We are, the phone model has some issues. We

have a quick --

 >>: I think that, I mean, there are customers

who really do care about chain of custody, so kind of

where the thing came from, whether it's a package URL

or, like, you know, this was the time-stamped HTTPS

session that this particular tympanic came from, to

some sophisticated customers, that really matters.

 >>: Great. Um, we have John Willis on the

phone.

 >>: Yes. Can you hear me?

 >>: We can. Thanks.

 >>: Okay. Um, just wanted to kind of go back

and talk about two basic configuration management type

terms, one of which you've already addressed quite a

bit since I pushed the button, regarding the transitive

dependency. So, the terms are basically what is this

software used by, and what does it use. So, the

transitive dependencies would be what does it use, but

what is it used on or used by is another concept. I

think that that one in particular doesn't, um, relate

in most contexts, but in some contexts, it does.

 >>: Thank you. We have, um, Bill on the phone.

Bill? Un-mute, if you are muted. Bill, we're going

to give you just a little bit more time. We gotcha.

 >>: I have a mute on my phone and speakerphone,

so go figure. So, two comments. One, from a naming

convention perspective, typically, names are made-up

in marketing, not by anybody technical, so I would place

not a whole lot of faith and ability to track things,

um, definitively by product name and version, because

they'll change, right? They'll go from, you know,

product name, version two to some other product name,

version one, when, in fact, it's the same product with

a few minor changes, so it gets very interesting very

quickly. From a flat versus hierarchical versus, um,

transitive perspective, um, you know, my perspective

is from a manufacturer, um, I don't necessarily care,

again, how things are plumed together, as long as I have

a concise list of what things are in a product. I don't

necessarily care for the purposes for what I need this

for, that's what the hierarchy is. Others will, right?

 >>: So, Bill, I'm going to push on for two

questions. First, your second point, do you care about

the transitive side of things? You want it transitive,

but you don't need the semantic data, is that correct?

 >>: I would say that's correct, yes.

 >>: Okay, and the second is you mentioned that

names are really hard, because they're put forward by

marketing people, and can you believe those guys? Do

you have a solution or a path forward?

 >>: Well, I mean, it's what you typically see

with a lot of other things, is you come up with some

lower order, um, meaning convention that is only tied

to the actual product name in some other way, right?

Um, whether it's a catalog number or a skew, product,

or what have you, it does have to be something that's

consistent, but you really can't use product names,

because they're never going to hash.

 >>: All right.

 >>: It's a new data element that manufacturers,

I think would have to inject into their products.

 >>: Thanks. Can you introduce yourself?

 >>: Yeah. Lev, Cast Software. Just a

question about the hierarchical versus flat. If you

assume that every piece of software has a BoM, um, then

wouldn't you always have a flat BoM for, um, a specific

piece of software, where you could actually look up the

BoM of any component, and then you'd be able to kind

of look at all the turtles all the way down? So, is

that sort of a non-issue then, if all software

components have a BoM, then you're automatically flat

and hierarchical?

 >>: As long as you can express a relationship

between them, you should be able to do it. As long as

you're able to express a relationship between these

software components, a language expressing that this

one relates to this one, or this is a dependency of this,

or you have a way of linking them together, you're fine,

you just need to have a way of linking them to add those

use cases.

 >>: But, I mean, if you have a unique identifier

for, right, for that software, right --

 >>: It has its BoM, right? You might want to

link to another dependency that's potentially built

into it.

 >>: Okay.

 >>: Or something like that. Like, if you have

a container that has a variety of packages inside of

it, each of those have their own SBoMs effectively, you

want something to say that these are all working

together inside this container.

 >>: But isn't that what your BoM is telling you,

that you've got these components inside your container?

 >>: Yeah, it's just a question of how do you

express that set of relationships effectively, because

it's not all one big document. You want all these

documents that you can link together and have a master

document that reflects all of them.

 >>: Okay.

 >>: That's how they interact. I think that's

what you're going after, right?

 >>: I think so. Sorry, I'm kind of new here as

well.

 >>: Um, I've got Josh and then Bruce.

 >>: I liked your question. Um, we should also

separate what might be valuable to defenders or, um,

managers or master BoMs for complex regulated products

from what an attacker sees, because my trial by fire

into this was people didn't know they were using patchy

struts, because one of their dependencies was using

patchy struts. X stream is the one I showed in the real

pigtails, those are really nasty and insidious, because

no one knows they're using them until they're

compromised by them. So, from an attacker eye view,

it is more flat, it is about column C, is nutrition label

and other things, and it's almost an independent

variable from a hierarchy of where the SBoM came from.

 >>: Bruce?

 >>: So, if you're going to say only direct

includes, which I think is what you're saying, I mean,

the people making the software, whether they're vendors

or open source people that are putting things in, they

don't really know what's in there unless, and this is

particularly difficult for open source people, they get

expensive, you know, scanners that go through, and as

many people know here, if you get six scanners, every

one of them will find something that the other five

didn't.

 >>: That's only if you're doing binaries. If

you're pulling from source, you can use GIT to assemble

a full list of transitive dependencies. It's not hard.

 >>: You can sometimes, but not if I get in a

library that doesn't have that information from

someplace else. You know, you're talking about

struts, um, being in there, you don't know it's in there

unless you somehow find that out. Now, you might be

able to find that out because you imagine the first day

this comes out, everybody's going to put out in SWID

or SPDX format or one of the two --

 >>: Or it just comes out of the build process.

I mean, this is a known art, like, this isn't even, like,

an advanced thing anymore, like, you can do continuous

monitoring on all your transitive dependencies, like,

now, it's not hard for all our open source components,

because they build from each other, and they exist in

repos that you can look at, and you just recursively

go, like, we go through and adjust that data, and you

could do it through SPDX as well. It's not hard.

 >>: Well, if you want to limit this to only those

components that are built that way, fine, but that's

not all the components, and, um, and I don't think we

should limit that, and, again, I think that the creator

of the software should only be responsible for doing

the top level. If they want to give additional

information that's problematic, I think that's fine.

 >>: I think that proposal undermines the idea

of impact analysis attacks. I mean, the whole point

is if you're only looking at what you grabbed, and say

it's not my problem below, like, that would be, like,

a car company saying I'm only responsible for the harm

from my tier one suppliers, not the tier two.

 >>: No, but we're, okay, so, the problem is

we're not going to be looking at the source data here

at all, we're going to have a tool that does this. I'm

trying to figure out how to make a tool that gives us

the answer, and if the tool just sees the top level and

the top level, then it can provide the list --

 >>: But what if every patchy project spits out

something it's not giving you today, what if every

project, because of this room, starts spitting out its

contributory BoM, and then we are assembling and

accreting and aggregating BoMs? There are some things

being done today, that's what we were capturing in our

user group, but what the broader group is saying is were

we to do a little bit more, does this become easier?

Not it is easy, but does it become easier? And if you

want to be adopted as an open source project, you're

going to provide a standard output SBoM that can go into

Jim's device, or you won't be used by Jim's device,

because he's regulated, so the regulatory forcing

function causes this change reaction.

 >>: I've got Art and then Kate.

 >>: The point I was going to make, you guys just

sort of got to. It may be that everyone looks at their

one level away, if it's a network effect and that's all

in place though, it all works out pretty well. Of

course, you don't have the network effect I mean, does

a car manufacturer know what the tier two is doing?

They're responsible, if something's wrong, but they

ordered the part from tier one, tier one did whatever,

right? I mean, they don't, I don't know tier eight,

right? So, if everyone's responsible for one hop down,

and everyone's in the network, this thing solves itself

theoretically, right?

 >>: So, this is, we've come to radical

agreement, as long as we've got a little bit of

ecosystem curation that's happening, is that fair?

Kate, do you want to chime in on this?

 >>: Yeah, I just think that, yeah, everyone

needs to do a little bit more than they're doing today,

and I think it'll help solve it for the hop-down effect,

as projects do it upstream, it then ripples down into

the others.

 >>: And to belabor this point just a touch more,

um, both from the commercial vendor perspective and

from, you know, the LF perspective, is this the sort

of thing where when you discover there's a package that

you're using that doesn't have the right data, or when

Bruce discovers it, it's a fairly straight-forward

thing, to sort of figure out how to get it in there,

especially if it's in the open source world, or is that

actually a fairly, a big lift for everyone to do, a

little bit of situational awareness?

 >>: It's still a big lift out there.

 >>: So, a concrete example, so when we generate

SBoM, we also generate, like, with the versions of the

transitive dependencies, part of the SBoM that we kick

out, um, indicates what the latest version of that

component is that exists out in the world, right? So,

if the component in this application is version 1.4,

but there is a version of this component that is version

2.8, right, we put that in the SBoM so that you could

know that there's a big delta between what the component

is and the most recent version of that component, then

it's up to you, whether you want to replace it or not,

but if you do want to replace it, it can entail a certain

amount of hand-stitching to go in, and in the build,

even when you have the source, say I don't want you to

use the default version that's in this build, I want

you to go to this other place and pull a more recent

version.

 >>: That sounds good. Um, hey, I want to sort

of try to capture the general situation of what I think

I heard over the last 20 minutes, which is that there

is some value in having the local hierarchy data, but

that might be emergent, if everyone just sort of

captures the top-level dependencies, and if we have the

top-level dependencies and the local structure to

capture the hierarchy, we get that. Is that where

we're ending up? Saying have the capacity for the

first level of the hierarchy, and then rely on a

slightly better, curated supply chain to get that chain

of trust all the way down, is that kind of what I'm

hearing? I may be missing a few things. Any concrete,

am I wildly wrong? Yes?

 >>: Just to follow-up, the supply chain, I think

there has to be liability associated with it.

 >>: A little louder.

 >>: There has to be a liability associated with

that. So, in other words, if, um, it's wonderful and

all, but if there's not liability in the sense that if

a car manufacturer is not liable for their, um,

fifth-party parts, then the fourth-party isn't going

to care to report out what the supply chain was for that

particular party.

 >>: But that's the ban components list, I think,

if you can, you know, identify things you don't want,

you're essentially blacklisting components. I mean,

the other thing is if you read the ULA for every single

software publisher, there is no liability in software.

 >>: We're going, yes, I'm always very worried

about using the L word in this sort of context, but I

think we can expand this to broader questions of

accountability. We'll use that, accountability and

responsibility. Sorry, we have two fingers in

response to that point, and then we'll get to Duncan.

All right, Duncan?

 >>: Well, one, I do think liability is more a

contractual issue between the customer, the consumer

and the producer, but the point is is what we're doing

capable of allowing them to write that in their contract

language, are we doing something that gives that, that

meets that use case is really, I think, as far as we

should go from our scope viewpoint. Um, but I wanted

to back up to a point that was made earlier when somebody

said, um, you know, we put in our SBoM the 1.2, but we

also put in that the current version is 2.4. The we

in that case is this, the committee you're co-chairing,

or your particular company?

(Off mic.)

 >>: Okay, I was just trying to figure out if that

was now in our scope or if we made our minimum viable

bigger somehow.

 >>: For those who missed that, she said this is

her company service, not something that we're going to

be pushing. Um, we have a patient Bill who's been

sitting on the phone. Operator, we are ready to hear

from Bill. Hey Bill.

 >>: At least it wasn't me this time. Great.

Um, the, for me, this is all coming back to, you know,

what do I need upfront versus, you know, what am I going

to be able to get later on. I don't know, it seems like

we keep talking about things that are fairly narrow in

scope, talking about very specific use cases that don't

necessarily tie back to each other. It's almost like

we're looking at it from bottom-up versus top-down, not

to overuse that phrase, but, you know, as long as we

have the ability to have a concise and accurate list

of components, I almost don't care how we phrase them,

how we get there, I just need to be able to know that

they're there.

 >>: And can you spell out in a little more detail

what a concise list of components means to you?

 >>: Sure. So, you know, if we manufacture a

product, we're software only, or in our case, medical

devices that have lots of software in them, um, you

know, my goal is to ensure that for any particular

device and/or software component, I have a list of

sub-components, and not necessarily having to care

where those exist within a product or where the

hierarchy is, I just want to have the list. Where this

becomes problematic is when you start, um, bringing in

other third-party components, and whether it's

complete systems or software packages, um, having the

ability to force them to do the same thing, I suspect

would get there over time, but, um, you know, we will

lose quite a bit of data, or we won't get enough

information to be, um, fairly accurate, if we don't push

that, but how deep do we go?

 >>: So, thoughts? No, I think that's, you've

cut straight to something that, um, this room has been

sort of going around for a little bit, which is, um,

I'm using a third-party component, that component is

using, right, you've got, um, transitive components,

at what point do we say the person who is doing the

compiling at point of time should have to go more than

one hop, um, back upstream.

 >>: It's like an experience, going after, you

know, certain third-party providers of packages to get

what is in their software is worse than pulling teeth,

honestly.

 >>: Josh?

 >>: So, to be a living, breathing daisy chain,

um, of the 60 products or so we build, three of them

end up in a lot of medical devices, including people

participating and watching this whole thing. So, the

FDA requirement makes them have to produce a CBoM, and

if myself or my competitors cannot support them in that,

in the format and hierarchy they do or don't need, they

won't buy my stuff anymore. So, in a forcing function,

the final goods assembler column in our graphic creates

market requirements and procurement requirements on a

compound part supplier, like a platform, like me, and

what that's going to do is if I'm depending on open

source products that are free, including single or

compound products, that impair my ability to sell that

medical device, then I'm going to have to replace them,

right? So, there is a process of chaos right now, that

the act of putting pressure anywhere in that process

is now squeezing everyone else upstream and downstream

in that process in what I think is a fairly healthy way.

Not pain-free, but healthy way. So, that's why there's

urgency to do this right away, because I need to know

which projects to get rid of, to replace, to get off

of, to clean up, to update, so I can make sure all of

my friends in this room can be compliant with FDA

regulations.

 >>: All right. So, I think this is, we made

some progress, we've better understood the problem. I

don't think we've fully settled things just yet. Does

anyone have some last words on thinking about multiple

hop lists, responsibility, and what this is going to

look like, um, in sort of the medium term?

 >>: So, we talked early in the day as part of

the scope stuff on the concept of minimal viable

product, which is, you know, the agile approach of do

the minimum you have to begin with, um, but it doesn't

mean you're done, there's further stages. We talked

about moving on. It might be we start with the top

line, but it might be we don't exclude to never get to

second or third tier ever in the rest of history, we

might just not make that be the first problem we solve.

I think it's most important that we get back to the use

cases and can whatever we create be made to work with

the use cases we need, and if we do it that way, I think

we'll get there.

 >>: Is there a use case where the top line,

single depth is sufficient for you? Can anyone tell

a story where going one layer deep is sufficient for

use case?

 >>: You mean one layer deep, one layer upstream

in the supply chain?

 >>: You are only including the top line of what

you're directly including, and someone can give better

terminology.

 >>: Um, my understanding, my, um, I mentally

came to the conclusion that we had some consensus on,

in fact, that was okay, so let me try the whole thing

real quickly. I am a software, whatever, creator of

some kind, things I build in-house, I create a BoM for,

everybody who I get a part from, I try to get a thing

from them. Stop. Everyone else do that.

 >>: The recursive process, where you're

depending on your upstream component managers. I've

got, um--

 >>: I mean, in some ways, it's moot, right?

Because of data, like, one thing that I've seen done,

right, is that you have a customer who has a bunch of

commercial products that has a bunch of open source

components that it has to list in release notes because

of licenses, and my company, I mean, they just put those

dependencies in monitoring, and you can do, with data

ingestion, a full pack-down and get the transitive, but

not hierarchical list, and monitor all of that stuff.

The data's out there, so if you don't provide it in your

SBoM, that may be fine, but someone's going to want it,

and they're going to go out and get it.

 >>: So, I want to make very concrete your

assumption, because I think I disagree with you, but

let's make it really concrete. So, if I'm a medical

device maker, and I get thing works from Josh, and I

list thing works version X dot Y dot Z and add some

special sauce to it as the device-maker, and we just

call it a day, then when there's an attack in the wild

for JBoS blah, blah, blah, they look and say am I

affected, and it says no, but that's because just below

the thing works is the thing that we just said is being

attacked.

 >>: Well, so, typically --

 >>: That's not deep enough.

 >>: No, I agree with you. Um, what we

experience in the commercial marketplace is that there

are open source packages, because the open source

licenses require that they be disclosed in the release

notes, that those --

 >>: Sometimes, yeah.

 >>: Yeah, so, to the degree that they are,

right, any component that you can get that's listed,

you can get all the open source transitive dependencies

for, like, that is a technological nonart.

 >>: But I'm trying to see if you're saying the

same thing or different than me. Which one are you

saying?

 >>: I agree with you, that the customer is going

to want the whole thing. Um, I'm also saying that if

you can't get the whole thing, because you can't force

all your suppliers to give it to you, there's ways to

derive it.

 >>: Let me do, so, thing works uses JBoS, okay,

so, um, you're BoM, you go one hop upstream, and when

you tell someone, you got a thing works from me, it

includes struts.

 >>: So, I give --

 >>: And struts gives you an SBoM that says I have

Java, or I don't know --

 >>: I'm pretending to sell to Jim right now. If

Jim only lists me, then his customers won't know if

they're affected by the next attack, even if I gave it

to him as thing works. So, I do think if we only go

one level deep, we affect the am I affected and where

am I affected case, the most basic of our use cases,

the Jennings use case, right?

 >>: I agree in the context of, like, commercial

proprietary software, right? If you're just doing dev

ops and you're using open source components, right, you

can do all the investigation you want. If it's

proprietary software that is not declaring its

dependencies, and that gets folded into something that

only declares its first-degree dependencies, then,

Josh, you're right, you're kind of screwed.

 >>: So, I want to make sure that we, we've got

Duncan, Bruce.

 >>: All right, so, I believe the way Ellen asked

the question was is our definition of an SBoM, quote,

only one layer deep sufficient, and I think the question

probably needs to be modified, because, A, it depends

on the use case, I think there's probably, hopefully,

general agreement, that if the particular use case

involves are you vulnerable to a particular CVE, you

need to know everything, all the components at however

many layers, so the question is can the one layer only

model be used to also work in the all the way down to

I have every component use case. If the answer is yes,

then we only need the one layer, as long as we show how

that works, but I think there are definitely use cases

that require you to know all the components, and, Josh,

you know, gave a particular example that tends to be

the classic example of, you know, whatever yesterday's

attack was came out, am I affected, is a particular use

case that you need to know every layer, the question

is is however we're defining whatever we're talking

about, I'm not even a hundred percent sure the question

we're trying to answer, but can we meet that need with

whatever we're saying, and if the answer is yes, then

we're done, if the answer is no, then we need to do the

multiple layer thing.

 >>: I've got Bruce.

 >>: So, it seems to me that the requirement is

you provide both flat ones, and that should be the end

of it. The requirement is you provide both flat

formats, the direct one and the all the way down one,

and then, you know, it'll satisfy everybody's

requirement here.

 >>: Is there any case where someone who would

like the full graph, sorry, anyone who wants just the

flat would not be satisfied by the full graph? Or is

it a complete, is it completely subjunctive from a use

case perspective? So, in that case, like, wouldn't

providing the full graph give the flat --

(Off mic.)

 >>: Um, so, I think, if I've got this right, and,

again, I just want to try to keep capturing where we

are, there's a general appreciation that most use

cases, we want to ultimately end up with the full graph,

including the dependency relationships. What we are

still unclear is is A trying to get just the B layer

and hope that by including the B layer, the B comes with

the C layer, or are we basically saying at time of build,

A should really have a good idea of all the turns.

 >>: So, I'm reminded of John Lambert's quote

from awhile back, which is attackers think in graphs,

defenders think in lists, and it seems to me that we

are talking about wanting lists, or at least the SBoM

that you're talking about earlier, um, attackers think,

you said attackers think of the SBoM as a flat list,

and actually, I think --

 >>: No, I meant, um, the attacks don't care the

hierarchy, they care if it's accessible.

 >>: Right, actually, that's the key point I was

going to bring forth. The attack surface is what we

care about as that first layer list. I don't think I

actually do care so much about everything behind it yet,

right? So, I think in the context of defenders

thinking like graphs, we should have at least some

purview of that first layer, so that we know how we

prioritize what we patch or what we fix, because if you

gave me a whole list, and there were tons of

vulnerabilities and 40 of those components, but,

really, only two of them were exposed, I would much

rather spend my time on those two and not worry about

the other 38.

 >>: How do we get to that?

 >>: So, I think the perspective is, I think, at

some level, yes, in the future, we get some complete

graph, but, honestly, I think I would really care about

A and B. Presuming that B is what's actually exposed,

right?

 >>: They're completely independent,

potentially, right?

 >>: I think that's part of the problem that

we're having, because the graph doesn't actually,

ultimately, manifest what gets exposed, but I also

don't want a long list of things I have to go fix, if

I don't, if those things that are on that list aren't

actually exposed.

 >>: Yes, but different problem. So, yes,

prioritizing, fixing the ones you're going to get

popped with first and ignoring the rest is, yes,

absolutely. I don't think anything we're talking

about here is going to directly help you with that.

 >>: No, I know, I understand that, but that's

the tension that we're trying to figure out, because

in the end, I actually still don't want a full list,

because it just, it creates noise, right?

 >>: Sorry, and just, again, I'm trying to be

precise here, because you mentioned lists and graphs,

so we have a couple of options here. One is the lists,

or the flat, and that can be one layer deep, and a graph

can also be one layer deep, but it doesn't make sense

at that point, or your lists can be fully transitive,

but without the transitive data, or it can be A calls

B calls C all the way down. So, just trying to do this.

Omar, you've been patient.

 >>: Yeah, just one quick comment. Um, I think

that we don't need a full graph, at least for my use

case. As a vendor, I get components from other, not

open source, but also other commercial vendors, where

it's going to break, and if B is a commercial vendor,

I cannot trace it back to when I get a repository or

anything else, I am dependent on that software bill of

materials from that vendor, right? So, anywhere in

this chain, if there's no transparency as a software,

as an open source software, you will break it, you will

be blind, right? So, that responsibility that I guess

was mentioned before, that's the crucial part, right,

because any of the, I guess these, I cannot see it from

here, if it's a commercial component, then it's closed

source, and it will break the chain.

 >>: Unless your commercial partner believes in

transparency.

 >>: Correct.

 >>: Um, Art, then Bruce. Sorry, Duncan, then

Art, then Bruce.

 >>: I was going to make a similar point, but back

to the point on, um, I think we should not confuse the

particular piece of information we need out of a

particular pile of information and the presentation of

the issue, like whether it's a list or a graph, okay?

We're talking about the information content of for a

particular block of software that you're procuring from

A, um, what is in it is the information we're trying

to come up with, and it might be for different use cases,

the what is in it answer is a subset of what is

everything that's possible to be in it, you know, in

his case of prioritizing, I only care about the ones

with the high vulnerability, but to be able to pick out

the ones with only the high vulnerability, you've got

to have actually had the entire list to begin with,

you've got to know which manufacturers used the

Japanese seatbelts recently, even though, you know, it

could be a Ford, it could be a GM, it has to do with

who's using that particular supplier, which was to his

point earlier. Um, so, you still need the collection

of information of the entire set, and then the question

is how do you filter it out, and I don't think we should

worry too much on the presentation or the filters, we

should focus on the information.

 >>: And I think in this case, presentation is

a type of data, so that is why I'm drawing this, right?

So, this has no hierarchy data, this has the graph, the

graph is shorthand for having the hierarchy data.

 >>: The answer to that, which one of the three

is better, might actually be use case-dependent.

 >>: That's a great point. I've got Art, Bruce,

Mark, Josh. Bruce?

 >>: So, sometimes, if you're trying to figure

out what you need to patch, the hierarchy matters.

The, um, issue that came out this year was not

exploitable when it was in, you know, Eclipse, and

Eclipse wouldn't put the patch out, because when they

put the fix in, Eclipse stopped working. So, you know,

in order to know that, I had to worry about the Baddach

issue, I had to know what it was included in, and if

it was included in Eclipse, I didn't have to worry. So,

sometimes, we need this information for patching

reasons, if that's one of the main reasons for getting

this information.

 >>: All right. Um, Mark?

 >>: Um, yeah, I think the gentleman to my right

captured my point, which is, um, one of the things I

was getting feedback from my team that's listening in

is we don't really have the customer here to tell us

what they want. Now, I say that because I do know the

FDA is here, but with all due respect, the FDA is not

my customer, by any measure, so I think we need to be

cognizant about the environment or situation where our

customers are telling us what they want, and their

demands that we incorporate directly into our software,

as well as the libraries, so make sure that as we address

very important issues, like medical devices and FDA,

we don't get lost, that that is the dynamic and, you

know, I don't see the banks here, the U.S. government

is already telling us what they want, and they're one

of our largest customers, but they're already telling

us what they want in the manifest. So, I think it's

important to keep that in mind, that we are talking at

different levels of application, and I think it does

matter, to your point, um, in the graph that I can barely

read across the room here.

 >>: No, thank you, and by the way, um, for any

of the customers that are on the phone right now, um,

feel free to star 1 and chime in, because we do, in fact,

have both public and private folks who would almost

certainly identify as customers.

 >>: Also, a quick comment, I'm your customer.

(Laughing.)

 >>: And you're my customer, so, um--

 >>: All right.

 >>: You're very good at telling us what you

want, by the way.

 >>: Josh, and then Michelle.

 >>: Yeah, I think he just hit on this in passing,

but there's several customers in the room, just a lot

of them are afraid to talk publically or identify

themselves, but they're in the room. Um,

about 50 percent of the time, you go up to your chart,

and I'm pretty sure I'm not the only one, I think I

understand what you're saying, and then you go back up

there, and then you undo what I just thought you said.

I think we need crisp, maybe not in the moment right

now, but very shortly after this meeting, we need a

crisp, clear taxonomy of what we mean by your

stratosphere there, because if what you're saying is

the medical device maker A only has to list out their

top tier vulnerability, or components at tier two ever,

presentation or content, then I think we would miss most

of the attack scenarios. If what you're saying is we

have to articulate them with that relationship model,

that's a different thing I could get behind, but one

makes me panic, and one makes me not, and I still can't

tell which one you're actually getting consensus on,

so, it's not your fault, I just think we're all using

the same words for different things.

 >>: And I don't think there's clear consensus,

so we're going to move on in a little bit. I actually

think this was a constructive discussion, I don't think

we've wasted time, it was really good to have these

different perspectives, and we also learned, as you

pointed out, that we need clear terminology, um, if only

we had a group that was positioned to do that, as well

as a group that was focused on the use cases. It's like

we have the right tools to solve this. Um, I've got

Michelle, and then I've got anyone on the phone on this

last question of thinking about how do we define the

elements, um, so, go on.

 >>: Thanks, Allan. Um, Michelle Jump. I do

want to just kind of go back, and I don't even remember

where it was, I was trying to jump in there. No, that's

fine, but at some point, someone was talking about the

actual use cases and whether some of these use cases

might have more general top-level needs, and I just want

to point out, as we're talking about the medical device

situation, I wonder if some of these use cases that

we're saying we need deeper levels, maybe because

you're patching based on the information you're

getting. In the medical device field, you should not

be patching unless you have authorization that that

patch has been validated from the manufacturer. So,

a lot of time, at least, you know, and I'm looking at

maybe some other folks who might be able to speak to

that, um, more directly, but in my experience, um, that

top level is a notification that these products may be

affected, but it's not the end all be all. There's a

communication and a collaboration that happens between

the manufacturer and the hospital, saying, you know,

flag these products, because they might be impacted,

but then the manufacturer's obligation is then to go

identify those products and which of them are actually

affected. That might take longer than we want it to

take, but there's also the issue of, you know, patching

without validation is actually against, um, what we're

supposed to be doing in our industry. So, I think

that's, and this is something that I have been very

concerned about as we talk about getting this SBoM

information out, um, is that what we don't want to do

is start having people patch products that have not been

validated to receive those patches and impact the

connected hospital environment.

 >>: I think our friends who are into

micro-patching not withstanding, um, there is, yeah,

um, I think most people would say that the alternative

is not to roll out your own patch, it's to use other

mitigation tactics rather than this, and there are, I

think there's a pretty good suite of what I can do, if

I don't have a patch on-hand, depending on the threat

and what I've learned. Um, so, last comments on this

question of what the elements are, and then since that

was so easy, um, I think it might be useful to have a

little bit of a conversation about how do we share this

information, what does the act of transparency look

like, um, and I'm curious, if someone wants to, um, dive

in on this front.

 >>: We should do rapid fire speed mode. I

think, just like you give a yula, you give a BoM. Every

time you build, every version you ship comes with a BoM.

That's a method. It's not the cloud method, but it's

a method.

 >>: So, can you be a little more precise?

 >>: It is package would the deliverable

software.

 >>: I would --

 >>: The cloud is different.

 >>: I would completely agree. Every time you

get a piece of binary, you should have an SBoM with it.

I'd also say that every time you do a release upstream

of a package, there should be an SBoM associated with

it for people to do derivative work before they build

it.

 >>: All right. Is there, so, in terms of

timing, I like that. For our device manufacturers,

does that work? Sorry, mic, will you use the mic?

 >>: It's either a direct BoM that's included

with it or uniquely identified, that you can some place

and get it so that it'll work for both cloud and

non-cloud situations.

 >>: One thing that I've had a couple

conversations with, um, from the folks in manufacture

usage descriptor, um, and, um, which is going through

the ITF today, and one of the things about that is it

says that a device, even a fairly lightweight device,

can have a network-readable X509 certificate that a

local router can read that will serve as just a pointer,

and its primary use case is to serve as a pointer for

a traffic profile, so this is great, it's, you have your

toaster, and your toaster tells your router where to

look, and there's a website that explains to your router

that my toaster should not be talking to anyone, it

should just be talking to the toaster. Um, but people

have suggested that this could also be a great way to

make sure that, you know, you can also contain a

directory that says, by the way, here's my BoM, and that

way, it just lives someplace not on the device, so we

don't have to worry about, um, this, the weight of this.

The other thing I'll point out is, um, some folks in

the ITF have also been looking at SWID, they've noticed

that it's a big, chunky XML format, and they said if

only there was a way to make it super lightweight, so

that it can fit on an embedded device, and hopefully,

Dave Waltermier will be able to chime in on that work.

I've got, um, two fingers from Josh, and I've got Kate.

 >>: All right, occasionally, people will say

why don't we just do what MUD is doing. I was surprised

you brought up MUD, but I'm glad he did. Um, and just

point at a web resource, a lot of these medical

technologies, vendors, and a lot of, even more IOT

vendors go out of business, so if we're depending on

a pervasively available web resource, that's maybe a

bad idea, so to me, it would be an and, like, maybe you

ship with something, and you can always point at the

most current, vibrant thing. My guess is we're going

to point at the resource for an ingredients list, I mean

for a nutrition label, which is the enriched one, it

includes mitigations and attestations, because we

don't want to update the attestations every day, but

the vulnerability list might update every day, so if

we're hinting at the future, I think you also ship

something with the product that you bundled, but you

have a web look-up for maybe more vibrant, current,

updated information.

 >>: Thank you. Kate?

 >>: Going back to the what else you should

communicate is every time something's a patch comes

out, you potentially want to be able to reference that.

 >>: You want to not just give an updated version

of the bill of materials, you want to explicitly be able

to say this is a patch.

 >>: This has been patched, yeah.

 >>: And this has been patched, referencing --

 >>: Referencing the original sources.

 >>: Mic? Sorry.

 >>: The patch has to indicate how it modified

the original BoM.

 >>: Sorry, we have, the question from Josh is

one, if you have a new BoM.

 >>: Yes, mine's referring to that. If we have

a BoM that is the entire list of all the components of

the software, are you saying that something in addition

to that has to be, and this is different than the

previous version by, you know, X, Y and Z? Is it sort

of a release change thing you're asking for? I'm not

exactly sure what you're saying, because aren't we,

sort of by definition, saying we have the whole thing,

so I, so, typical patches today, people worry about,

because you say, hey, I'm patching red hat, and what

you're really patching is this particular, you know,

heart bleed vulnerability or whatever, because it's

buried three layers, but if we do actually have the

entire piece of information that is made of A, B and

C, are you saying you have to put in the deliverable

the diff of this is different than the previous one?

I'm not exactly following.

 >>: I was just saying that there has to be a way

it can be highlighted, okay? That there is a patch

sitting there. You might deliver it at one point in

time, and a patch may be sitting off to the side, and

you may want to know whether or not that patch has been

applied to your specific instance.

 >>: So, can you explain to me the difference

between patch and version and why, I mean, the purpose

of the BoM is to say, hey, I switched component B from

version one to version two. Is a patch something

different than that, or it's just you're saying here's

the ones I changed?

 >>: Um, a patch might emerge between versions,

it might be a fix for something that happens between

versions. Go for it, Josh.

 >>: I've struggled with this, so I'm not saying

I have the answer. I have struggled with this. People

will patch a version without changing the version,

which effectively changes the memory image, and that,

so that is a historical pattern. I think implicitly

in my vision of the future here, every change is a new

version, instead of us keeping this ambiguous, gray

area, unless you're a micro-patching fan.

 >>: Well, are we drawing a distinction between

a patch and an update by defining a patch specifically

as something to address a security vulnerability?

 >>: I think if the components change, you have

a new version and a new BoM and a new unique identifier,

and we have plenty of numbers that we could use. We

don't do that today, but I think we benefit from more

discipline and rigor and change control.

 >>: I've got Mark --

 >>: Let me just, again, I think this is getting

into the granularity of particular use situations.

Let me tell you, if we were to do that with our

customers, there could be other chaos, just if we were

going to change that kind of thing so regularly. So,

I think you need to be careful about making assumptions

about the nomenclature based on the situation of use

in a particular environment, particular kinds of

customers. I mean, I've got colleagues on the phone

who can tell me if I'm right. I think that would create

utter chaos with our customers.

 >>: Sorry, creating utter chaos by a new bill

of materials --

 >>: By renaming everything, every time you do

a patch, I mean, because that's not the way our cycles

work.

 >>: Yeah, a lot of support language is based

around major, minor patch, a lot of, um, charging for

things is based around these, a lot of, um, internal

policies of what you're allowed to do during a change

window, you know, labeling it matters, so I agree with

you about the historical nomenclature baggage, that's

not to be ignored, I'm saying that the practice of a

vendor putting stuff out that isn't uniquely

identifiable has created other problems besides why

we're here, and that, in theory, could have solved.

 >>: But there's two things that are being put

in the same bin. One is rolling a new component in,

which, yeah, you should probably generate a new SBoM

for that. The other is I fixed a bug in my code, and

I put in a pull request, and that would be complete

chaos, to your point, to rename a new version every time

you do that.

 >>: Okay. I think, um, so, we're going to let

the versioning question, give me a second, um, Art, did

you have a very quick --

 >>: Sorry, yeah. If you pull a, if you accept

a pull request and change the code and re-package, you

don't make it a P whatever release. Sorry, I guess,

sure, yes?

 >>: I want to check with our team. I think it

really depends on the product. We don't just have one

product, and each of them have very historical legacies

and dynamics, so, um, I know that we're very careful,

given who our customers are, who are themselves

regulated and need some consistency in how they report

it, that we're very sensitive about renaming or, I mean,

we're very careful about when new versions come out,

because it has implications for a lot of things.

 >>: Sure. I didn't really mean red hat, but

it's Josh's example exactly. If I change the software,

and there's no stream, identifier that changes, then

I don't know how the software changed.

 >>: Yeah, and I think by any measure, red hat

may be, um, we may not be special, but I think we are

a unique vendor in that we, I think, do a very good job

of explaining to our customers what you're getting,

what we've changed, because that's the nature of our

customers, and they're under pressure, either

internally or otherwise, to know what they're using.

 >>: I'm going to get to Duncan in just a moment,

unless it's, so, the model I use is the two fingers means

you're throwing an interrupt, and I will prioritize

you, but if you do it too often, you're going to get

called on less and less, and, so, because I do want to

get to folks on the phone. So, is this a, you want to

throw an interrupt and chime in on this particular

point?

 >>: Yeah. I was just going to propose we add

to the action item list of things we have to, you were

making a list before of questions that need resolving.

I think we're having a lot of semantic arguments, like

on the word version verse the word patch verse, no, we

just need uniquely identifiable software. I think we

should solve that offline, but I do think we need to

solve that.

 >>: No, I really appreciate you flagging that,

and we will document this, and there are working groups

that are getting longer to-do lists. All right, on the

phone, we've got Bill, then John.

 >>: I should be off mute now, I hope.

 >>: Yes.

 >>: So, a couple things. With respect to, um,

is a patch a new version or what have you, um, I guess

I would posit that, um, you know, the actual software

product, I'll use the word software here as product,

would remain the same, but you would, I think Josh

mentioned it, you'd have major and minor version

indications as to what the patch level is. That is

going to be deployment-specific, I don't think you can

make that, um, part of the base product identifier, that

would be messy. Um, that would be a major, um, version

change, but when it comes down to identifying, you know,

what patches exist within our product, that's always

going to be site-specific, and we've got to take that

into account. The other item kind of goes back to a

prior topic with respect to what is in the bill of

materials, and it was the concept of atomic versus

molecular designations made, in other words, you know,

the smallest component would be an atomic component,

versus molecular would be made-up of, you know,

multiple sub-components, just from an identification

purpose, so you wouldn't have to worry that there wasn't

any, um, other sub-components in play.

 >>: That's really nice framing. I'm speaking

just for myself, I like that framing of, you know, do

you go down to the atom, or do you capture the molecule.

So, thank you. Okay, on the phone, we have John Willis.

 >>: Yes. Just wanted to suggest one, um,

additional item for the, um, the structure of the BoM.

Um, add another field called build number, use it as

you wish, but, um, oftentimes, that's another number

that's provided by the, um, whoever built the software,

and sometimes, if it's re-issued software with the same

version number, maybe that could be, um, purposed for,

um, annotating that.

 >>: Is there any comment from the room on build

number being particularly constructive, or perhaps

not? We have someone hovering in front of the

microphone. Okay, great. No one is shaking their

head wildly. Oh, Josh is.

 >>: The more I think about Mark's point, it's

not a technical point at all, it may be intended to be

technical. I think there's a real hazard that needs

real contemplation so we don't trigger an anti-body

response, which is the business implications of

changing the nomenclature, that live patch, custom

patch thing has been a source of valuable ambiguity that

has kept, been the DMZ between what's in contract and

not in contract, and we like having that valuable

ambiguity, and whatever we do here should preserve the

intent of some of that valuable ambiguity, less it be

burned with fire by lawyers.

 >>: Thank you, and this is definitely something

we're going to follow-up on. Um, so, last comments on,

and again, zooming up to the bigger picture of how this

information is going to be shared, um, between the

vendor, manufacturer, packager, assembler, and the

person who's going to be using it, with a caveat that,

of course, they're different use cases. So, if anyone

has a use case of why certain types may not be good,

that would be a good thing to throw on the table now

as well.

 >>: Just one question on, um, somebody

suggested build number, and I was just kind of thinking,

um, that a date might be a valuable, um, piece of

information there, and just thinking of use cases, I

may want in a BoM to know, you know, because you can't

have a new, let's say BoM for every single time that

you tweak a piece of software potentially, right, but

what I may, as a, um, user of software, I may want to

stipulate that, um, you know, I don't want the BoM to

expire beyond, maybe, a certain amount of time, you

know, so I want it to be relevant, or, you know, current

within, let's say one week or one month.

 >>: So TTL on the BoM?

 >>: What?

 >>: Time to live. You want an expiration date.

 >>: Yeah, perhaps. Yep. Or a date of when,

um, the, um--

 >>: Are we conflating a BoM, which is just the

straight-up ingredients, never changes, with the more

femoral or transitive state of CVEs and things in the

nutrition labels? Are we combining those two in your

question?

 >>: Um, so, yeah, no, I was just thinking, um,

that, um, a BoM is taken at a specific point in time,

right, and the components that you've got in your

software might have changed at various --

 >>: Then I'd say it's a new version with a new

BoM.

 >>: With every --

 >>: Every time. If your cloud service deploys

hourly, you have a new BoM spit out hourly.

 >>: If that's, yeah, I mean, if that's the

solution, it sounds fairly heavy, but --

 >>: We're going to go to the cloud side in a

second, but certainly, for local software, um, I think

the notion is that, as I've heard expressed by a number

of people, as built, and, so, every time you build, um,

but I just want to follow-up on the first suggestion

you had, which is having a time-stamp. Is there a value

in having a time-stamp? Duncan?

 >>: I think we could get very hung up and spend

a really long time on arguing what the word version

means and time-stamps and patches. I think Josh said

it, I'm not sure I'm going to copy it exactly, I'm not

going to remember it exactly, I think we need a uniquely

identifiable identifier of the software you're talking

about, that if the software changes, you're now

changing something or another. Now, certain use cases

might use semantic versioning and major/minor and

whatever, and certain use cases might use the, you know,

red hat's been doing what it's doing for a really long

time, so I'm not proposing they have to change their

versioning, okay? Um, whatever meets the criteria of

I can tell the software changed is all we need to deal

with, I would argue.

 >>: I think we've got that in a lot of ways right

now with just the hash, a hash on the evidence you're

putting out.

 >>: And again, I'm just saying just sort of

leave it at that and get on to other things to argue

about.

 >>: Thank you. All right, um, we have an hour

left today. I think, again, this has been useful, to

sort of tackle some of these issues and show that even

something that, in a big picture might be seen as

simple, once you bring the experts into the room, they

show that there's no such thing as an easy problem,

because all the easy problems have been solved, and,

so, I'm very glad that all of you are here. So, let's

tackle something that we've alluded to a couple times,

and we're going to probably, again, return to our use

case discussion, but let's talk about, when we move away

from the on prim deployed software, um, and we're going

to use the cloud as the shorthand. Obviously, it's a

very complex set of, um, architectures that we're

trying to capture. I'll put two positions at either

end of the spectrum, and I want you to sort of figure

out where you like this. One is from, for most users,

a lot of the use cases that we have for on prim software

bill of materials, we also derive in a pretty

straight-forward fashion from a bill of materials about

a cloud-based product.

So, that's the full-on, yes, absolutely for SBoM

and cloud, and we don't need to make any changes to how

we're thinking about it. At the other end is an

argument that between ownership responsibility and

between the fact that modern cloud deployments have

just this incredibly diverse and complex architecture,

how we think about a bill of materials is wildly

different and may not, in fact, have an inherent value

for some of the use cases. So, that's the absolutely

not, and of course, and I'm putting these out there as,

obviously, toy arguments. I'd like to hear how you

react to that. Yes?

 >>: And I hate to overcomplicate things, but

there's something between as well that is a hybrid

approach, that is a cloud service is actually updating

hardware on prim device, and now it's providing some

type of bill of materials that it recites there, and

it changes also all the time with some other services,

APIs, you know, whatever the case might be.

 >>: All right, so, yeah --

 >>: And actually, we're connected to one right

now.

 >>: This gets to the notion that the line

between cloud and on prim is, in fact, quite blurry,

and if this is, this might be a different use case rather

than a middle position of the spectrum. Um, yes?

Duncan?

 >>: Could you or somebody say more on the cloud

use cases you're thinking of? Because in my mind,

there's a difference between I'm using a service, and

it's sort of the service provider's, how we built this

software and whatever, I don't care if he's got the

vulnerability, it's his service, he's got to worry

about it, verse the I'm putting something in the cloud,

and I'm in charge of the components and doing whatever,

and then it's more like the prim case to me. So, the

host type of thing, so what exactly are the particular

use cases you're trying to solve?

 >>: Got another two fingers.

 >>: A comment, not a solution, but Nest created

a nomenclature of all the community clouds, hybrid

clouds, service, you know, softwares for service and

everything. I think we probably have to look at them

to address them, this is out of scope, this is in scope

and everything, but both from an infrastructure and a

software as a service, think about, I'm only pointing

fingers to myself, you know, WebEx, whenever you're in

the WebEx, that's a service, wherever that recites,

that also should have a bill of material to support you,

right?

 >>: Yeah?

 >>: This is only one of our use cases, but it's

the primary use case. Um, to answer am I affected by

a new attack, every time the software and memory image

changes, regardless of where it is or who owns it, it

changes my attack profile, or potentially changes my

attack profile. So, I think, maybe it's just such a

basic point, I skipped it, but to me, a change in the

attack surface or attack, you know, stack is a change

in an SBoM, and if they're sutured together in our

heads, then it's not about what is it, it's more about

how do we deliver it, and that's going to be, like I

said, is it an API, is it an interrogatable thing, is

it a dynamic thing. When you look at some of the really

forward development environments, they're drag and

drop, as you imagine it, you create mash-ups of, you

know, micro-services. There's not even an

architecture to it, so no one's going to, like,

deliberately retroactively go back and make an SBoM,

it's going to have to be, you know how they say security

is not composable? SBoMs are, right? If we have every

single piece at any part of the stack, whether it's

Amazon hosting your pass middleware or your custom

secret sauce that's at the sauce layer, the composable

nature of that attack surface to an attacker, we should

be sutured to. Now, I realize I mixed attack surface,

which is column C, with the software composition, which

is column A, but I think we have to think that way. It's

less about what's in it and more about how do we access

it, and how often do we access it.

 >>: So, I think the way that we would look at

SASS services would be, or cloud, but SASS in particular

is that the threat model that we produce for that SASS

service assumes that they may get compromised through

whatever software that they have within their stack,

and it would be incumbent upon us as the users of that

service to ensure that our content is well-protected

and dependent of whether or not that entity is

compromised. So, the premise here, again, is if, um,

regardless of what their SBoM is, um, we're already

designing our security controls, um, based on the

threat model that they are compromised, whether it's

an administrator or some external adversary. Okay,

the other perspective, um, is in terms of, the other

type of inventory that we do is we try to inventory all

the APIs that we use externally, so it's a different

type of SBoM, if you will, but it's one where we're

trying to understand what is our exposure as it relates

to all these different APIs that are being made

available to us, and we're consuming that for our own

purposes. Um, not an easy task, but it is one that,

um, is part of our own internal SBoM of if you're billing

a piece of software for some purpose internally on

premise, what, um, what components are you pulling in

in the form of APIs.

 >>: Thanks. Um, and I'm going to ask, do you

have, therefore, some opinion about whether or not this

group should try to tackle this, or is this something,

and you can say no, I don't have an opinion, or do you

think this is sort of --

 >>: I have an opinion. It's, I would agree,

it's the latter. It's a different enough use case that

I would not try to make it much more complicated. This

is a hard enough problem as it is. Let's tackle this

one first.

 >>: Good. Thank you. Kate? Nope? All

right, we have Bill on the phone.

 >>: Um, seeing as the web cast is, um, delayed,

I can't see the two fingers, so that's good. The aspect

of web services, um, micro-services in particular, um,

I would probably argue that those are going to be

treated as atomic items, only because, you know, the

provider is going to be responsible for maintaining

those. I wouldn't, as much as I'd like to know what's

in them, I almost don't want to have to care, because

I'll just treat those as something else that's within

my application, especially for those, um, single-page

app, where it's micro-services on the back-end, your

BoM is going to be fairly simple, but, um, when it comes

to, you know, vulnerability management and assessment,

that's the level at which I think we're going to see

things. We're not going to see things underneath the

covers for them, we're going to see it listed as an issue

with, you know, lambda or S3 or something like that

versus the pieces that make them up.

 >>: Okay. So, we're going to see, there's some

less visibility there. Um, further thoughts on this

particular issue? Again, this doesn't have to be the

last time that we tackle this aspect of it, but it also

can be, if enough people stand up and say let's stop,

I'll leave this outside of scope. This can be the sort

of thing that our use case group can, um, sort of start

to tackle.

 >>: Not knowing NTIA as well as you do, can we

have items where we agree not to wade in too deep, but

we have, like, an opinion on? Like, we think it might

look like.

 >>: It's your party, you get to have, um, you

know, if you want to write-up a draft of here's why this

should be thought about by future people, that's great.

 >>: I mean, more specifically and less

sarcastically, you know, the split decisions in, you

know, court cases, right, there's a dissenting opinion,

right, could we articulate what's the best case for

treating this no differently, what's the best argument

for treating it differently, let someone else, at a

future time, go pick up our thoughts, right?

 >>: No, that is absolutely something that you

can do, which is to say here are some issues where we

did not have complete consensus, but we think they're

important enough that they should be considered

regardless of what the outcome is. I think

documenting, again, the expertise of folks who have

thought about this and thought a lot about the benefits

of bill of materials, as well as, you know, what, you

know, what makes this aspect of business, and the more

you have behind that, the more likely it is that someone

is going to pick up, um, pick this up and work with it.

 >>: Let me clarify then. It's an important

issue. I think the hard part of this is less for a cloud

provider, the hard part of it is less the software they

use and the fact that the cloud provider is not you,

right? So, I think in the context of what your concerns

are, in the hierarchy of concerns, you should be more

concerned about the provider itself turning malicious

than the software going bad, right? And, so, um, while

I agree, that it is a concern, um, it was more of a

hierarchy of ratings, if you will, and that's really

manifested through the threat model that we perform.

So, the threat model shows that a malicious insider in

that company is going to be far more likely to be, um,

damaging to me than the fact that they may use struts.

 >>: I'm going to ask one more question around

this, which is if you are wearing your

customer/consumer hat, do you want, does it mean

anything if your provider says I have a bill of

materials, or, no, I cannot produce that? Regardless

of how you would use the data, just as we've talked

about, you know, channeling my inner Steve Lipner, if

I can invoke him, a lot of the value, just does the

vendor have the capacity to generate the space. So,

as you think about this, is it important that your

service provider, whatever that looks like, again,

acknowledging this is a very diverse space, be able to

produce that list, be able to produce that internally

and manage that internally? Mark, then John.

 >>: Um, so, I think, inevitably, the cloud is

going to be an environment that we think about here,

and I think it will depend um, and I don't know if Kent

is still on the call, but my one take-away from the first

meeting was that we were going to start with the simple

use cases first and then think about the cloud. I would

continue to think about that as a work stream. I will

say that the, in this context, one of the differences

I discern between the traditional on premise or even

private cloud approach versus a public cloud approach

is that this discussion of transparency is largely a

one-way street when you talk about the traditional. In

cloud, it is a two-way street, and I think that until

we have a discussion about what is the obligation of

the cloud provider, public cloud providers, in

providing API, you know, documentation, everything

else, the discussion of an SBoM for, um, software used

in this environment is not going to get very far, and

I think it's a very different dynamic in the public

cloud versus the traditional environment. So, I throw

that out to make sure that we, you know, make progress

in things that are manageable and controllable at this

point, recognizing we'll get down the road on the

others.

 >>: Josh?

 >>: Your specific question of as a consumer of

a cloud service, I think, yes, it's meaningful to me.

I'm a power user, but it's meaningful to me in a similar

way according to the vulnerability disclosure program

is meaningful to me. It tells me they're more likely

to hear laws from good guys before bad guys. It also,

um, indicates a level of maturity that may stand them

apart from their competitors, but number three, and a

very measurable way, if they have an SBoM, my hunch is

their mean time to remediate will be marketably

different than if they're blind every time.

 >>: Quick interrupt, and then over to Mike.

Yes?

 >>: I would never interrupt the note-taker. My

point of APIs was very specific. I think most public

cloud providers will be glad to provide you with the

variety of APIs they have. The question is are they

providing you with complete, accurate, and full

documentation of their APIs, so that the utility of an

SBoM can be meaningful. If they don't do that, then

SBoM, I think, has marginal utility. I'm being extreme

here, but that's the difference between the two,

traditional environment versus the cloud environment.

 >>: It's really helpful. Thank you. Mike?

 >>: My point was just covered nicely. Thank

you.

 >>: Oh.

 >>: I just realized I'm a cloud provider. I

provide banking services, and I don't know if every

customer would want my SBoM.

(Laughing.)

 >>: Right?

 >>: But if I had a choice in two banks, one

that's capable of internally measuring their own supply

chain and hygiene, versus one that can't, I'd pick, I

think --

 >>: You'd pick one that would have, right.

 >>: I don't see it, but I would need to know that

you're on it, but I also am FDIC-insured, or you are

rather.

 >>: Anyway, I'm just putting it in context for

myself, where if I see myself as a cloud, a SASS provider

of banking services, um, I think I would actually not,

yes, I would want to certainly, just internally, good

hygiene, you know, all that kind of stuff, I want to

have good SBoMs and stuff, but I don't think, if I were

to look at sales force and say, hey, sales force, give

me your SBoM, I would say that seems just completely

out of bounds, just as much as it would be for me to

offer it to a customer.

 >>: Yeah, so, there's a, um, I think a way out

of this, so to speak, is, um, on prim, product and

software, there's a vulnerability in something, I have

to go track it down, decide on my risk, go patch it or

find it or something like that. SBoMs very useful.

Knowing that my cloud provider has something buried

three layers down doesn't really do much for me, they

have to fix it anyway, I'm at their mercy, knowing, if

I know they have a bug and they're fixing it, it doesn't

really matter to me where it is in their SBoM. I want

them to know, they should have an SBoM for their own

purposes, but I get marginal utility at best out of

knowing what they're doing, especially if they're

changing it hourly or four times a day or something.

 >>: Is the demarcation point operational in

responsibility? Like, it's meaningful to someone with

operational responsibility?

 >>: I mean, this is full management case, right?

I have to take action, I need the BoM data to figure

out what to do better. If someone else is, if the cloud

provider, if the bank's liable for messing up and it's

their problem, they have to have their own, but I don't,

their down stream doesn't care.

 >>: I have invoked Steve Lipner, and like that,

he has appeared to us on the phone in the ceiling, so

we're going to hear from Steve, then JC, then Duncan.

 >>: Yeah. Hi Allan. You raised a, you brought

my name up, and that, I figured I better, um, better

call in and say something, so you'd know I was at least

still here. I've been having, the web side of the

conference is so out of sync with the audio that I'm

having a tough time, you know, sort of knowing who I'm

hearing or what's going on, so this is somewhat

anonymous, but I think you summarized my point, um,

accurately. There has to be, you know, in my view, the

SBoM is useful to somebody, not to hold up an SBoM and

say, gee, I have an SBoM, but to use it to actually do

something within their scope of activity and effective.

Um, so, you know, do I, as an end user customer, do I

care about, um, about the SBoM of the software that I'm

relying on? Maybe not. Do I want my supplier, who

created that, um, that, um, that software, to have an

SBoM that they, um, rely on and can use to manage the

software? Yes, preferably all the way down to the

sand, and, so, I think that's sort of a rule for thinking

about SBoM, you know, who can use it, and what can they,

can and will they realistically do with it. Um, it's

not just something to, asking somebody to show it to

you, to demonstrate that they have it is maybe not the

most efficient way to, you know, to deal with it, but

knowing that the organization that's maintaining the

software, updating it, releasing the updates,

evaluating vulnerabilities, deciding whether some

action needs to be taken, knowing that they have an SBoM

and are actually using it to make those decisions is

very important. I hope that makes sense. Thanks.

 >>: Thank you. That's, um, always great.

I've got, um, JC, and then Duncan, and then we'll move

on.

 >>: So, um, to Art's point, it is an incredibly

common situation, that vendors have vulnerabilities

that they do not address or will not address. Um, and,

so, I think the case for transparency here is you can't

make the vendor do anything, but is there any sort of

remediation you can do, um, on an infrastructure level,

or, you know, put something behind a load-balancer,

like, is there anything you can do in your systems

security plan to remediate this vulnerability, which

the vendor or their supplier is not going to fix? And,

so, you know, that's the operational question.

 >>: That's really helpful. Duncan?

 >>: Thank you. Um, I think we might look at our

terminology a little bit, and I think prim and cloud

might not be the best choices. Um, a lot of what we're

talking about when we say prim have to do with a device

of some sort, have to do with your buying something,

a device might be a virtual device, it might be a

collection of software, and there are cases in the cloud

where you're, again, buying a virtual device, and in

those cases, I think the SBoM, the exact same arguments

we made about everything else applied just as much, and

there are other types, other times when you're

consuming a service, and there, like was just

mentioned, sometimes, you can't do anything about it,

but there's still value in knowing, because also,

you're doing risk management, or you're doing risk

management for the vulnerability use case, and in that

case, that's when you'd want to do that, and again,

maybe you don't have choices, maybe you go to a

different supplier, maybe you can put in controls or

something. Um, if it's the cost case that we

mentioned, or in use cases, sometimes you also do SBoMs,

because they save money and they're good things, those

are less applicable to that particular case. They are

applicable to the device cases, they're less applicable

to the interface cases. So, I think it does come on,

um, on terminology, but I just think if we avoided the

prim and cloud, we might sometimes make it easier, if

we got into more specifics of which use case we're

talking about. Thank you.

 >>: Excellent, and I love this common theme

that's really been at the core of everything today,

which is, comes down to the use case and work up from

there.

 >>: Yeah, I'm not sure this changes anything,

but did you say you might be buying a virtual device?

And if you're talking about a virtual machine, isn't

that a service?

 >>: No, a virtual device is different than a

virtual machine. I mean, a virtual machine is you're

buying someone's compute power, I mean, it's a

particular type of virtual device.

 >>: That's an example.

 >>: But I, I was chief architect at AT&T, I used

to spend millions of dollars buying from Cisco and other

places virtual devices, which were basically their

software running in my cloud. In fact, I'll say most

of the network cloud you're talking about today is,

today, mostly run by buying software from people and

running it on hardware that you bought from different

people, and that case is more like a classic device case

with an SBoM, and you want to know everything and

everything else.

 >>: Okay, that answers my question, because my

question was aren't you buying a service.

 >>: Well, when you are buying the service,

that's when this gets iffy, and it's harder, and I can't

wrap my head around it quite as much, but particularly

in the device cases, when I'm buying a compute

infrastructure and putting software on it to do a

particular function, then that software bill of

materials matters a lot to that chunk of software.

When it's an API to something, it's a little bit grayer

in my mind, what the SBoM buys you about the API use,

other than the whole risk management of I at least trust

them better, because they know what their software is,

and I can look up, if they give it to me, yeah, I know

they're susceptible to this bug, and they haven't fixed

it, so there is still a, there's still a value there,

but it's a different value than the more direct control

device or virtual device case, where it's, you know,

my pacemaker or my, you know, virtual router in the

cellular network or whatever.

 >>: All right. Um, I've, I do want to move on,

but we've got, um, Steve back on the phone, and then

Josh quickly.

 >>: Yeah, so, a woman spoke right after me and

said, you know, talked about relying on vendors that

don't, you know, that, um, when there are

vulnerabilities reported, they don't remediate them,

and my preferred or recommended solution to that, I'm

not sure that's an organizational position, but my

personal recommendation there is get another vendor.

I mean, that's sort of the long-term solution to that

problem. You know, my perspective on this is based on

the expectation that vendors faced with, um, with

vulnerability reports will investigate them and

remediate them, and if you, if you've got a vendor who

won't do that, I think you're, I think you've got a

bigger problem.

 >>: I mean, I feel it is not too far of a stretch

to say that Canes is still right in this case, that in

the long run, we're all dead. Hopefully, not in the

ICS space, but it's a little too on the nose. Um, Josh,

then we'll move on.

 >>: So, what I like about this chat is there's

a lot of critical thinking going on, people that started

at one point are really wrestling with this. I think

one of the things that's been on the tip of my brain,

and maybe you're getting at this as well, if you get

past the technical layer again, if we use, like, a car

as a metaphor, the final goods assembled, there's some

liability associated with harm that's clean. When you

go to software, there's no liability, and lots of

attempts to make sure we never have it, and I'm not

trying to go to the L word. Cloud and services are

somewhere in between, because there's much more rigid

contracts and service-level agreements and spheres of

control, in part due to cloud security alliance and a

lot of the A6 work, so I almost wonder if one of the

reasons we're struggling with this is our technical

part, it's a mixture of technical and accountability,

responsibility, and I haven't solved it, I'm not going

to solve it in the course of me un-muting my mic here,

but that's part of the, our confusion, right? Yes?

 >>: Definitely.

 >>: All right. We have, um, about a half an

hour left. I do want to get into some of the logistics,

because I think this is something that, um, this

assembled brain trust can tackle and see if there's a

better way we can self-organize, but before we do, I

want to get back to something that, again, has come up

a little bit here and there, which is independent of

the bill of materials, and, you know, we're leaving this

part aside, um, there may be some real value in hooking

other types of communication that explain sort of this

vulnerability idea, and, you know, I think from both

perspectives, from the vendor and the customer, if it

is, if there is something that is going to trip a naive

sensor, and it's not going to be something that the

customer needs to care about, no one wants to deal with

this, so is there a way that we can sort of find a way

of communicating issues around, and I'll use the term,

and it's not a great term, but I'll use the term a

false-positive, um, against the naive strip? We had

an intake of error. So, the question is if we have a

software bill of materials layer, and both of the tools,

um, and the formats that have been proposed, um, both

SWID and SPDX, allow pointers to other things, do we

want to have a conversation that we can start now, we

don't have to finish it, but we can start now about what

those pointers may be? Um, do we want to say let's

start thinking about how we would hook a discussion

about vulnerabilities or mitigations, or to use Josh's

word, attestations, to this data plane?

 >>: All right, are you asking if people will,

whether we want them to or not, cross-reference

national vulnerability database for potentially

exploitable vulnerabilities?

 >>: I think what I'm saying is if we assume that

there is going to be at least some use of this data --

 >>: It's already happening.

 >>: To flag against this type of information,

do we want to allow, or do we want to enable further

communication from the vendor to the customer, hooked

to the bill of materials, that explains or gives

otherwise mitigating information to say this is why you

should feel comfortable ignoring this blinking red

light? I'm looking at, I want to start, Bruce, I feel

terrible, I wanted to make sure that we get your

engagement on this, and I know a few other people have

had some thoughts on this.

 >>: So, when I put up those three columns, the

one I'm most scared about is the middle one, right?

It's kind of like the middle of the road, where all the

cars hit you, right? We're on the blind side of the

road right now, where we don't know enough. If we stay

in the middle, we could have a lot of these difficult

and potentially noisy conversations about potentially

exploitable vulnerabilities, most of which won't be

exploitable. If we push through, I think this is

future-proofing the standard of format, which is

creating this space, the name space, or the fields, for

me to make a claim that says I have tested this, I have

hardened this, I have put mitigations in place, my

configuration, this is not vulnerable in my

implementation, something along those lines. So, I

think if we allow our sales to stay in the middle ground,

we'll have lots of problems. If we push through

straight to the third one, we'll be better off. I don't

think it's a lot of fields, but it future-proofs the

format.

 >>: Can I push on you? Can you sketch out, what

would that look like?

 >>: So, um, I'm going to butcher, Mark,

hopefully, he's on the phone, but his source clear

stuff, he showed things, said out of a hundred

potentially exploitable vulnerabilities, a single

digit percent are actually in the control flow, and I

had to push back and say there's other ways to exploit,

but let's just say ten of those hundred are actually

exploitable, so if someone says go get, go fix all the

other ones, that could be a lot of work.

 >>: And I think we all, what would that --

 >>: So, I would put in a column as the vendor,

or the supplier, um, we have threat model tested, etc.,

this is not exploitable in our code at this time, blah,

blah.

 >>: I like it. I've got Mike and then Art and

then Bruce.

 >>: So, I'm sort of picturing myself as a

product vendor, asserting that this particular exploit

cannot be used. Okay, I just wanted to highlight that

element.

 >>: Bruce?

 >>: So, certainly, in the general case, it's

difficult to do that, but let's take a real example,

and an example I'll pick is log for J vulnerability,

it came out this year, and at Oracle, there was 450

products that used it, I don't actually think any of

them were vulnerable, but certainly, it's less

than 5 percent, and that's because they don't use the

feature that was vulnerable in log for J, and we know

that, because there's no way to configure it in those

products. So, you know, in order to make this work,

you know, there's two things, I think. One of them is

the naming issue. So, I know that when it says open

SSL or whatever, I know what that is, or when it says

Oracle product X, people know what that is, and the

other one is this issue here, where the vendors need

a way to say this vulnerability is not exploitable in

our product with this component, so that if Eclipse

could have said this in a machine-readable way that said

we're not vulnerable to Baddach, you know, vulnerable

CVX, everybody down the lane from that would know that,

and the case of this one, um, Baddach inside of Eclipse,

Eclipse is inside of Java, Java is inside of the Oracle

database, the Oracle database is inside of some Oracle

products, everybody all the way down there has this

problem of explaining to their customers all the way

down, and lots of them, that they're not vulnerable,

and we've done that. If I could just put this online,

a whole bunch of people, and when we're putting out

patches for log for J, we've got about a hundred

products that we're putting out the fixes with no other

fix but that one, so people are applying fixes that is

not improving their security at all, and anytime you

do any change, it degrades things with some

probability, so it's doing no one a benefit, you know,

and all that will do is cause people to not put on

better, you know, important fixes, because they can't

handle so many fixes.

 >>: Thank you. Um, I've got Kate, then Omar.

 >>: Yeah, I'll just, um, I agree with the

problem of the signal to noise issue, when you've got

a lot of the false-positives. One of the things I'm

wondering is to what extent should we looking at

tracking and recording config information from the

bills? Would that be helping to explain that something

is not potentially exploitable?

 >>: Yeah, so, this has to be separate, right?

Because you put out a product, and then if it had Eclipse

in it, just go back to the same piece I've used the whole

time, somebody later discovers there's a

vulnerability, so this has to be independent of the BoM.

I'm not claiming it should be part of the BoM, in fact,

it can't be part of the BoM.

 >>: There are myriad qualifiers willing to

give. One could be this is off by default, you're at

risk, if you turn it on. I mean, we could say anything

we would want to say, but communicating our mitigation.

Also, it has the benefit of, if we're lazy and we just

make something up, we put in writing that we did

something, and so we could be held to our claim.

 >>: Omar, then Duncan.

 >>: So, I'm definitely in between both. So, we

score, not score, we disclose worst case scenario, so

even if it's not truly potentially exploitable today,

if somebody configures it, you know, differently and

everything else, I'm there with it, the challenge that

I see, putting that into the BoM, and I'm not against

it in one way or the other, um, yeah, at a nutrition

level is the time, again, the chicken and egg thing.

So, if we're building this or pushing this into the

build time, then I have to actually put all the

different CVEs and everything else that is not

applicable, we actually tried that in one product, it

failed miserably. We used to put that in a release note

with all the CVEs that potentially are in that, and the

customer said, you know --

 >>: I think these attestations probably aren't

at, what's the phrase Kent uses, as built?

 >>: As built.

 >>: They're probably living resources on the

web somewhere.

 >>: Yeah, I think the notion is there's a

column, which is to say it is condemned of your software

bill of materials, versus I can imagine there is a

pointer, um, that could be, you know, if not actually

standardized, then certainly, um, you know, de facto

deployed in such a way that everyone knows that a URL

structured this way, um, indicates that there is

something good waiting on the other side. Um, Duncan,

then JC.

 >>: So, again, getting in terminology, so we,

I think, are stabilizing on this thing called an SBoM,

and we're now discussing, I thought, whether to add

another column to it associated with things, and you

just, but that's a different thing, a nutrition label

is a different thing than the ingredient list, so the

SBoM is the ingredient list, I don't think we should

add another column for the CVEs. I do think the CVEs

need to reference, or a different thing we come up with

needs to reference the relationship between CVEs and

SBoMs. This particular SBoM was built on this

particular code on this particular day with this

particular set of software, and it is vulnerable to

this, and it's not vulnerable that we know of to this,

this, and this. That relationship is a different thing

than an SBoM. The SBoM is the thing released to, I'm

not against nutrition labels, I just think it's a

different thing than the ingredient list, and the SBoM

is the ingredient list.

 >>: I think that there's a case for yes, and in

terms of the live evidence, because our, again,

operational experience is that you need that statically

generated SBoM for audit. So, it's not about whether

you're green now, it's whether you can prove that three

months ago, you were compliant, and, so, you do need

to be able to archive this stuff in an immutable way,

just a different use case. Um, to your point, you know,

the SBoM is different than the, essentially the

assurance package. Um, in practice, those things get

combined, but they don't have to be.

 >>: Thoughts? Responses?

(Laughing.)

 >>: That's it.

(Laughing.)

 >>: All right, so, what I'm hearing, unless, is

there --

 >>: Well, just for the note-taker, this

assurance package, at least in my graphic, was the

nutrition label.

 >>: So, I want to avoid using the term nutrition

label, because that is being used a lot by a bunch of

other people in this space to mean wildly different

things, so I know that there's a lot of value in that

metaphor, but if we're focusing on a very concrete

issue --

 >>: How about the framing, can I nominate the

framing guys take an action item, which is whatever

words we change to at any given time, we at least know

what word refers to what content.

 >>: Yes, which loops us back to where we are,

which we've got some questions that we've walked

through this afternoon, yes?

(Off mic.)

(Laughing.)

 >>: So, we've walked through, um, a number of

things this afternoon, and it looks like a lot of this

stuff is, in fact, going to end up on the framing and

understanding the problem plate, in part because it is

around understanding the problem. Um, the, we've

still talked about the general idea of what are the

components, and that came up with, we sort of got a

couple of dimensions here of both does it come with the

semantic data, or is it just a list, graph verse list,

and then who is responsible for producing, to what depth

I think that's the first thing, and I don't think there

was a perfectly clear consensus, but I thought we did

a good job of exploring the space, and we'll make sure

that there's some notes that are available for the

group. The second thing was on how we're going to

convey the data, and it was a productive discussion,

and we also learned that we do need to have, probably,

some clarity around versioning was the thing that sort

of popped up. We also have acknowledged that naming

is a known hard problem. I don't know if a particular

solution was advanced, but this might be something that

we want to continue to take up and poke at, and one of

the things that we might want to do, and we can work

with you on this, is collect resources, because there

are a bunch of tools out there, people have tried to

tackle them initially. All of these are being put on

Michelle and Art's place, unless someone wants to jump

in. Naming actually might be a good fit for the

standards and formats group. We've got some hesitant

head-shakes. Um, before we, and then, of course, we

talked about cloud, and I think that boiled down to

really thinking through use case, and, so, that might

be something, if it fits into how the use case group

is approaching their problem, does that make sense, to

sort of think through and get a little more clarity in

how a bill of materials might manifest in different

types of use cases? I've got a hesitant look from Josh.

So, sorry, first, use your mic.

 >>: I don't think that conversation can happen

without also looking at the differences of contractual

accountability/responsibility that do vary wildly

between cloud and, yeah.

 >>: Agree completely. I think that's

something that a lot of people mentioned. Some people

advance there are going to be uses, um, where having

this data could be useful, and others said, no, it's

not under my control, I think if anything, there was

some discussion to say, perhaps, we should package up

what we think about it and leave it as an unresolved.

In fact, that was the idea of a very smart, rather

good-looking person, if memory serves, who sort of

proposed that. Um, but I think it's still, it's one

of those things that comes down to use cases, and then,

lastly, what did we just talk about? Oh, the sort of

vulnerability information, and is that going to be, um,

something that, um, our understanding the problem folks

want to start to begin to look at? Probably.

(Laughing.)

 >>: Yeah, I'm not completely willing to own it,

but we'll add it to our big question list.

 >>: So, this gets us to the core of how we're

going to move forward over the next few months. Now,

unfortunately, many of you have families and jobs, and

both of those take up a lot of your time, especially

with the holidays, and, so, we want to acknowledge that,

you know, things are going to be busy and hard to

schedule over the next few months. Um, from our part,

we are thinking of having an in-person meeting, the

default of being in Washington, DC again, somewhere

around February 20th to 25th or 6th or 7th, somewhere in

that window. That is either a week and a half, or the

week before RSA, and we're trying to do that, so one

thing that's very useful is from my mapping, there isn't

a major information security conference, and I haven't

heard about a giant, um, medical IT event in that

window, but if there are, we want to make sure this idea,

this date is shared as quickly as possible, so that you

can block your calendars, so I want to get some thoughts

on having that window, and then our next question is

going to be does it make sense to have a virtual meeting

in January as sort of a short-term progress meeting.

So, Josh?

 >>: I kind of hate this is coming out of my

mouth, but I hate the idea of coming here before, um,

is commerce dead against doing a stakeholder group

where we're all, many of us will be in San Francisco

during that week? Like, um, we did this in Chicago for

CVD, we did it, you know, can we do one on the road?

 >>: So, we are happy to go on the road. If

someone wants to host a discussion around a major event,

that's great. The problem with hosting something

around a 40,000-person conference is finding a day

during the week of RSA where folks might be available.

That's where I'm a little worried about trying to find

that time. Um, certainly, we can have smaller

discussions during that time.

 >>: Just a point of clarification, RSA doesn't

schedule speeches Monday for purposes just like this,

and they tend to put crappy ones on Friday for similar

reasons. Now, I'm in, like, six workshops on Monday

myself, but the point being this is the kind of place

where people can have existing travel.

 >>: Put you on the mic.

 >>: That week, there's also going to conflict

with embedded world in Europe.

 >>: Okay. Thank you. I think that window

actually spans a weekend, so I think we tried to

capture, um, sort of either the, um, either the 20th is

a Thursday, maybe, 20th is Wednesday, and so this either

gives us two weeks before RSA or the week before RSA,

and, so, but the whole thing is embedded. It's almost

like it's really well-situated. Okay, um, so, that is

one of the big conflicts. Um, again, if someone wants

to say, you know what, we should have this someplace

warmer, um, it's easier to do this, again, co-located.

I'm not sure we're quite ready to co-locate it, um, at

a European conference, that might be a stretch. You're

kind of looking at almost all of NTIA's budget right

now. Mic. Sorry.

 >>: I think you could pick a date and, you know,

something about size, then there's a lot of people,

Cisco and us, or, you know, maybe even red hat or

somebody can have a good chance of being able to come

up with something. Um, they have, you know, stuff

that's big enough, we think we do, I don't know if we

can get permission or not, but I certainly am willing

to ask for it, if that's what people like, but I don't

want to have to pick the date.

 >>: Okay. So, we're going to go with, and let

me just check, by the way, um, on the phone, forgive

me, um, is there anyone on the phone who wants to weigh

in on sort of the end of February? We've got one

conflict, but I think that conflict may not be,

Michelle? Yes?

 >>: I was just getting a heads-up via text here

that, um, Hems is the week of February 11th to 15th in

Orlando. That's another huge conference, but there

might be some potentials to, um, we would have to make

sure people get hotels very quickly, um, that's a huge

one, but the medical folks would be there in many cases.

 >>: Good to know. It also means that we can't

schedule it outside of that, during that week. Um,

thank you. So, we will, um, we will work on nailing

down a date. I think Bruce's advice was good, which

is trying to nail down a date, and then we will talk

location. Um, we're also, again, trying to be mindful

of getting people on planes. Would it be useful to,

sometime around the second or third week of January,

have a two-hour, three-hour, um, you know, phone and

slide share, to give folks, um, here's something to aim

for, here's, let's try to get an intermediate draft,

is there value in having that on the calendar? If you

remember, we did that, we had originally planned to have

one in September, and just the working groups were a

little slow setting up, that was my fault, so we said,

you know, let's focus on just having, circulating an

update, and if we didn't want to actually exchange, we

could still share documents, all of the working groups

could sort of have something to show by the middle of

January. Thoughts on that?

 >>: Yes.

 >>: Yes?

(Laughing.)

 >>: What was the date of the FDA workshop?

 >>: The FDA workshop is the 29th and 30th of

January. All right, so, what we will do is, um, we will

put our heads together, folks have further thoughts on

that, we will definitely be trying to circulate

something, um, a few weeks after the holidays, so that,

you know, the working groups can, they can do the work

up to the holidays, they can take some time off, come

back, put together an intermediate document that we can

share. Maybe we'll, you know, all get on the phone and

talk to each other, and then in the end of February,

we will try to, um, convene in-person, and we'll, um,

we'll talk, we'll get the date down, and then we can

talk through what that would look like. Yes?

 >>: So, I missed the last meeting, so I didn't

join any working groups, I'm now at this meeting, but

I haven't written down my e-mail or contact information

or anything anyway, and someone put up, like, a, you

know, 8-font size that I couldn't read URL that I could

go to to sign-up for something, so how do I sign-up to

help with something?

 >>: Duncan, that is a fantastic question. I'm

so glad you asked it. It is certainly not too late to

join the working groups. There are sign-ups on the

NTIA website, I will recirculate them. Three of them

are based on, um, cert.org, or the organization

formerly known as cert.org, and the Lennox Foundation

is hosting another WebEx, we will circulate out that

information in the next day or two, so that everyone

can sort of, in addition to seeing what happened, can

jump in. I'm also going to ask, um, all of the working

group leads to re-send calendar invites. I apologize,

for those, if this confuses your schedule, but it allows

us to make sure that folks, who for some reason, signed

up after there was a calendar invite sent out, it's

something that will be on the calendar. So, thank you

for clarifying that. It is not too late to sign-up,

there's a lot of work to be done, and the final plug

I'll make, um, and we've got 10 minutes left, so there

will be some chance for you to jump in, is, um, this

came up earlier, are there folks that you think should

be in the room? We do have some customers in-person

and online, I heard that feedback. I'm going to go out

and see what I can do to, um, select that group Are

there other folks that you think should be engaged in

this discussion that you haven't really heard from?

Are there sectors where you think this could be a truly

revolutionary approach, but we want their feedback as

part of building this out?

 >>: Is there a list that we can see which one

is represented?

 >>: Traditionally, we've avoided sharing that

list, because when people signed up, they may not have

agreed to give that information, but I'm happy to talk

to it. It's more --

 >>: At least the sectors.

 >>: Yes. I mean, we have some presence from the

IT sector, but I don't think we have an overwhelming,

um, presence from the enterprise IT sector. We have

one of the larger trade associations from that sector

in the room, I'm sure he'll help, and, um, certainly

healthcare is very well-represented. ICS is quite

interested, but we just need to bring more of them to

this meeting. I know a bunch of them have signed up

for mailing lists. Um, Michelle?

 >>: I was just going to say that we do actually

have a place in our guidance documents to try to capture

all of these sectors, so if you have a list of

sector-specific, but not necessarily entity-specific,

um, we could use that information.

 >>: Excellent. All right. Um, we've sort of

hit everything we tried to on our agenda. This was,

I thought, a really productive meeting. We have these

in-person, because it's a chance to show up and roll

up our sleeves and dive in. Our first meeting was

really just saying what's going on, why are we here,

and there was a lot of discussion about that. In the

intervening few months, you guys have actually made a

lot of progress. I think we're quite happy with that,

and in addition to sort of seeing the path forward that

the working groups are on, I think we did a lot of good

work today of really looking at some of the big

questions and figuring out how we're going to tackle

them, and so, moving forward, we're going to return to

our working groups, NTIA will send out a minutes, we'll

post the slides, um, and we will also, um, sooner, in

the next few days, when we have it, post the video

online, so, um, you know, if there's something that you

want to capture from this, you can give it a re-watch,

make popcorn, and then I think I'm going to sort of say

is there any last words or things that folks want to

say about how we should move forward? Duncan?

 >>: I hate to be a pain on this, but I'm having

trouble finding it. So, the only place I have to go

to is the NTIA software component transparency, and I

can find everything? Because none of this stuff is on

that site.

 >>: Thank you. Um, there is, and it used to be

at the very top of the page until we put up information

on this meeting, there's a link called October 1st

update, and that will have some of the sign-up

information, but you're exactly right, it is something

that, um, we put prominently as this was standing up,

and we lowered it on the website to make sure that folks

could find out information on this meeting. So,

penultimately, I want to thank Megan and Anna for

helping to make this meeting happen, and Anna for

documenting the work. She is at Stanford and will soon

be looking for work in the next year or so, so if you're

looking for someone who has her fingers on the pulse

of technology policy, and then the final thing I will

say is there is a bar not far from here, um, the name

of which I will look up once we've stopped the web

recording.

(Laughing.)

 >>: And for folks who want to continue the

conversation in a little more collegial environment,

um, we will all reconvene there. To those who have been

watching or listening, thank you so much, and we will

reconvene in February.

This is being provided in a rough-draft format. Communication Access

Realtime Translation(CART) is provided in order to facilitate
communication accessibility and may not be a totally verbatim record

of the proceedings.

