
Final Draft 0.4

Framing Software Component
Transparency
NTIA Multistakeholder Process on Software Component Transparency
Framing Working Group
2019-09-03

Éamonn Ó Muirí
https://flic.kr/p/46dsiz
https://creativecommons.org/licenses/by/2.0/legalcode

Final Draft 0.4 1

Final Draft 0.4

Table of Contents
Table of Contents 2

1 Problem Statement 4

1.1 Goals 4

2 What is an SBOM? 5

2.1 SBOM Elements 6

2.2 Baseline Component Information 6

2.2.1 Author Name 6

2.2.2 Supplier Name 6

2.2.3 Component Name 7

2.2.4 Version String 7

2.2.5 Component Hash 7

2.2.6 Unique Identifier 7

2.2.7 Relationship 7

2.3 Mapping to Existing Formats 8

2.4 Component Relationships 8

2.4.1 Knowledge About Relationships 9

2.5 SBOM Examples 9

2.6 Additional Elements 11

3 Data Formats 12

4 SBOM Processes 13

4.1 SBOM Creation: How 13

4.2 SBOM Creation: When 14

4.4 SBOM Exchange 14

4.5 Network Rules 15

4.6 Roles and Perspectives 17

4.6.1 Perspectives 17

Final Draft 0.4 2

Final Draft 0.4

4.6.1.1 Produce 17

4.6.1.2 Chose 18

4.6.1.3 Operate 18

4.7 Applications 18

4.8 Tool Support 19

5 Terminology 19

5.1 SBOM 19

5.2 Component 20

5.3 Author 20

5.4 Supplier 20

5.5 Consumer 20

6 Background 21

6.1 Overview 21

6.2 Mission Statement 22

6.3 Scope 22

7 Conclusion 23

8 Acknowledgements 24

Final Draft 0.4 3

Final Draft 0.4

1 Problem Statement
Modern software systems involve increasingly complex and dynamic supply chains. Lack of
systemic visibility into the composition and functionality of these systems contributes
substantially to cybersecurity risk as well as the costs of development, procurement, and
maintenance. In our increasingly interconnected world, risk and cost impact not only individuals
and organizations directly but also collective goods like public safety and national security.

Increased supply chain transparency can reduce cybersecurity risks and overall costs by:

● Enhancing the identification of vulnerable software components that contribute to
cybersecurity incidents

● Reducing unplanned and unproductive work due to convoluted supply chains
● Supporting more informed market differentiation and component selection
● Reducing duplication of effort by standardizing formats across multiple sectors
● Identifying suspicious or counterfeit software components

thus increasing trust and trustworthiness while lowering costs of our digital infrastructure.

Pockets of people, policy, process, and technology are solving parts of the problem, but not in a
systematic and scalable way that crosses development environments, product lines, vendors,
sectors, and nations. A more systematic and collaborative approach can help.

1.1 Goals
To achieve greater supply chain transparency, the primary goal of the Framing working group
was to create a standardized model for software component information that can be universally
shared across industry sectors. The model defines and describes an SBOM, relationships
between components, the creation and sharing of SBOMs, the roles of participants, and SBOM
integration with supply chains.

To scale this model globally, it is necessary to address the difficult problem of universally
identifying every software component. So a subsidiary goal was to select a core, baseline set of
attributes necessary to identify components with sufficient relative uniqueness. Another goal
was to capture SBOM use cases and applications and consider what additional, optional
attributes and external elements might be needed beyond the baseline set. During the course of
the multistakeholder process a handful of SBOM applications emerged. These included:

● Vulnerability management: Improving the ability to assess and mitigate risk caused by
vulnerable components

● Intellectual property management: Verifying proper and legal use of components with
different licensing and entitlement terms

● High assurance: Assessing confidence that components are authentic and unaltered
● Improved supply chain hygiene: Reducing complexity and costs, increasing quality

Final Draft 0.4 4

Final Draft 0.4

● End-of-life: Recognizing when components will no longer be supported

Keeping these applications in mind, the Framing working group chose not to dig deeply into
them, but instead focus on the core model, baseline component identity, and other elements
necessary and common to all of the applications.

Further background on this multistakeholder process and the work of the Framing working
group can be found in section 6.

2 What is an SBOM?
SBOM stands for “software bill of materials.” An SBOM identifies and lists software components,
information about those components, and supply chain relationships between them. The
amount and type of related information included in a particular SBOM varies depending on
specifics such as the industry using the SBOM and the demands of certain customers of the
SBOM such as a government entity or large vendor. However, for this initiative the focus will be
on establishing a minimum expectation for creating a baseline SBOM which, as the name
suggests, outlines the minimum amount of information required in an SBOM for the most basic
and essential usage of an SBOM to be practical.

An SBOM system should have a way of relating each component back to the broader
instantiation. This may vary, depending on the vendor. If there are relationships of links
amongst the components, this is another beneficial data point to add to the SBOM. However,
some of this information may be added as the concept of an SBOM matures within the various
industries and vendor processes. The value of quickly gathering this minimum set of baseline
information for a majority of software components will significantly improve the ability for each
industry to better manage the components that they use. Starting with a baseline set of
information allows this process to be adopted by a variety of stakeholders quickly and then be
built upon over time. This is one of the major drivers for establishing such a basic set of
information as a starting point, rather than requiring a more robust set of attributes that may
require more time and resources to collect and maintain.

Machine-readability is another key part of a useful SBOM system. Large organizations will need
to collate and manage large amounts of data from various suppliers/vendors so it is critical to
allow the users of this data to manage this in a machine-readable format for efficiency and
expandability. Choosing a specific data format is an important part of this functionality and will
be outlined later in the document (insert specific reference, as well as additional documents for
more resources from NTIA project). Without a specific data and naming format, it would be near
impossible to trend and manage components that are named in an ad-hoc fashion.

SBOMs will also not exist as independent entities, completely isolated from other data sources.
For example, vulnerability management requires an external catalog of known vulnerabilities

Final Draft 0.4 5

Final Draft 0.4

(e.g., CVE), association of vulnerabilities to components, and possibly a means by which to 1

convey the transitive exploitability or exposure of a vulnerability along supply chains. The user
would map SBOM components to the catalog for further risk evaluation and mitigation.

2.1 SBOM Elements
The Framing working group and the overall multistakeholder process reviewed existing software
identification formats and thoroughly debated and questioned which elements would be 2

necessary to build a functional, core SBOM system. Many of the answers depend on the
desired use cases and applications that can be built on top of sufficient amounts and quality of
baseline SBOM data. Without a way to systematically and consistently define and identify
software components and their relationships, none of the desired applications are possible at
scale. Therefore, one required element of an SBOM is a baseline set of attributes to identify
components.

2.2 Baseline Component Information
The primary purpose of an SBOM record is to uniquely and unambiguously identify components
and their relationships to each other. In order to do so, some combination of the following
baseline information is required. It is possible that not every SBOM record will require or be able
to provide each of the baseline attributes. Certain attributes (e.g., Component Hash) provide
greater uniqueness or unambiguity, and so does having a greater number of the baseline
attributes in an SBOM record. 3

In addition to providing baseline component information, an SBOM must also support the ability
to cryptographically authenticate SBOM information. SBOM authentication is optional, and
requires appropriate digital signature and public key infrastructure.

2.2.1 Author Name
Author of the SBOM record (this may not always be the supplier).

2.2.2 Supplier Name
Name or identity of the supplier of the component in the SBOM record, including some
capability to note multiple names or aliases. When the author and supplier are the same, the
supplier is defining a first-party authoritative component. When author and supplier are different,
the author is making a third-party claim about a component from a different supplier. The
confidence in this claim is not specified.

1 https://cve.mitre.org/
2 “Elements” are constituent parts of an overall SBOM system, as opposed to “components”
(units of software) and “attributes” (information about components).
3 An SBOM “record” is a component and its associated attributes.

Final Draft 0.4 6

https://cve.mitre.org/

Final Draft 0.4

2.2.3 Component Name
One or more component name(s), including some capability to note multiple names or aliases.
Component names can convey supplier names. Component (and supplier) names can be
conveyed using a generic namespace:name construct.

2.2.4 Version String
Version information helps to identify a component.

We do not specify how authors, suppliers, or components are identified and named. We also do
not specify syntax for version information, other than pleading for some basic consistency and
logic [semver.org].

2.2.5 Component Hash
Adding a cryptographic hash of the component is the most precise way to identify a binary,
as-built component in an SBOM. The hash is effectively the unique identifier of a component, 4

however other baseline identification information will be useful and even necessary.
Cryptographic signatures can be used in place of a hash, but add the complexities of key
distribution and signature verification.

There are techniques to create hashes of groups of components, for example, SPDX specifies a
Package Verification Code that creates a hash of hashes for individual file components. 5

2.2.6 Unique Identifier
A unique identifier can be generated and used to help identify components. This identifier
could be a version 4 or 5 UUID. 6

2.2.7 Relationship
Relationship is inherent in the design of the SBOM. The default relationship type is, broadly,
“includes.” For example, in Table 2, Acme Software v1.1 includes Bob’s Browser v2.1. It is
possible to further refine the “includes” relationship, as supported by both SPDX and SWID. 7

The default “includes” relationship supports the following assertions about what the SBOM
author believes about additional relationships. See Section 2.4 for additional context.

4 https://hal.archives-ouvertes.fr/hal-01865790/file/main.pdf
5 https://spdx.org/spdx-specification-21-web-version#h.2p2csry
6 https://en.wikipedia.org/wiki/Universally_unique_identifier
7 https://spdx.github.io/spdx-spec/7-relationships-between-SPDX-elements/

Final Draft 0.4 7

https://hal.archives-ouvertes.fr/hal-01865790/file/main.pdf
https://spdx.org/spdx-specification-21-web-version#h.2p2csry
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://spdx.github.io/spdx-spec/7-relationships-between-SPDX-elements/

Final Draft 0.4

2.3 Mapping to Existing Formats
Table 1 (recreated from Table 1 in “Survey of Existing SBOM Formats”) maps baseline 8

component attributes across SPDX and SWID.

Baseline Representation in SPDX Representation in SWID

Supplier Name (3.5) PackageSupplier: <Entity> @role

(softwareCreator/publisher), @name

Component
Name

(3.1) PackageName: <softwareIdentity> @name

Unique Identifier (3.2) SPDXID <softwareIdentity> @tagID

Version String (3.3) PackageVersion: <softwareIdentity> @version

Component
Hash

(3.10) PackageChecksum: <Payload>/../<File>

@[hash-algorithm]:hash

Relationship (7.1) Relationship: <Link>@rel, @href

SBOM Author (2.8) Creator <Entity> @role (tagCreator), @name

Table 1: Mapping baseline component information to existing formats

2.4 Component Relationships
The first step in developing an SBOM is often to start with a simple list of first-level components.
However, in order to scale as necessary, an SBOM needs to capture supply chain relationships
between components, to the extent that those relationships are known. While an SBOM may
ultimately reflect many types of relationships, the baseline described in this document is built on
a single type of relationship: “includes.” That is to say, this component contains other
sub-components, or dependencies. This captures the fact that the software code may be
included in a component, even if there is no actual logical dependency (i.e., part of a library). 9

An SBOM is made up of one or more components, and each component may also contain one
or more components. The first component listed in an SBOM defines and identifies both the
component and the current SBOM. We call this the primary component, and every SBOM has at
least this one component.

8 https://docs.google.com/document/d/1YzpLd8VtLIrAQtULZhRf6ZENqmaZ-w71wfhQdpNSpcs
9 A richer set of relationships such as “patches to” or “expanded from” can be found in some of the
existing standards. This document focuses on the single high level dimension of “includes.”

Final Draft 0.4 8

https://docs.google.com/document/d/1YzpLd8VtLIrAQtULZhRf6ZENqmaZ-w71wfhQdpNSpcs/edit#

Final Draft 0.4

In the simplest case of a root SBOM or component, consider a single component that was
created entirely from scratch with no dependencies. The SBOM of this component consists of
only one SBOM record. This single record defines the component and the SBOM and has a
special relationship type of “self.”

In the example above, the SBOM of Acme Software would have four components, since each
SBOM includes itself. We can visualize an SBOM as an upside down tree. The root of the tree is
the software itself, and is not included in anything else. Each node is a component, and most
components are made up of other components. The leaves of the tree do not include further
subcomponents as part of this SBOM.

In this example, Acme makes Software that uses exactly two third party components, Bob’s
Browser and Bingo Buffer. Bob’s browser, in turn, uses Carol’s CompressionEng, and may also
use other components. Carol’s CompressionEng does not include further subcomponents, while
Bingo Buffer may or may not have any further dependencies.

2.4.1 Knowledge About Relationships
Ideally, all suppliers will create and provide SBOMs for their components, and all consumers will
obtain complete chains of these authoritative SBOMs. In every SBOM record, Author Name
(2.2.1) will equal Supplier Name (2.2.2) and there will be perfect knowledge. Until this state of
transcendent SBOM utopia is achieved, SBOM authors may want to make
less-than-authoritative assertions about SBOMs for which the authors are not the suppliers. In
such cases, it is important for authors to convey their knowledge about the relationships of other
suppliers’ components.

The default presumption is that a component may have further unlisted subcomponents. When
the author of an SBOM is confident that a component has no further subcomponents, or that
they have fully enumerated all the subcomponents, that should be indicated. The following four
assertions may cover the range of an author’s knowledge about another supplier’s components.

1. No assertion. This is the default. The component may or may not have any upstream
relationships.

2. None. There are no upstream relationships, this is a root component.
3. Some. There is at least one upstream relationship and may or may not be others.
4. Complete. There is at least one upstream relationship and all upstream relationships are

enumerated.

2.5 SBOM Examples
To further illustrate the relationships described in the previous section, consider these SBOM
examples. Figure 1 and Table 2 show two different ways in which to view SBOM information

Final Draft 0.4 9

Final Draft 0.4

and relationships, but they are conceptual representations and not format impementations like
SPDX or SWID.

Figure 1: SBOM tree example

Relationship Component Name Supplier
Name

Version
String

Author Hash UID Relationship
Assertion

self Acme Software Acme 1.1 Acme 0x123 234 Complete

includes |-- Bob’s Browser Bob 2.1 Bob 0x223 334 Some

includes |-- CompressionEng Carol 3.1 Acme 0x323 434 None

includes |-- Bingo Buffer Bingo 2.2 Acme 0x423 534 No assertion

Table 2: SBOM table representation for Acme Software

Final Draft 0.4 10

Final Draft 0.4

2.6 Additional Elements
Depending on the desired application or uses of an SBOM, further elements are likely
necessary. The specific additional information needed will depend on the application and
therefore each specific item should be considered for its value to expanding the potential use
cases by adding it to the SBOM. In some cases, the optional elements may not add benefit for
the planned use cases.

The following list describes several examples of additional information that could be useful to
add to an SBOM:

1. Intellectual property applications, such as license management and entitlement,
require associations of different licenses and types of licenses to components, and a
way to evaluate the net effect of different components with different licenses combined
into an assembled good. In fact, both SPDX and SWID were designed to carry license
information.

2. High assurance applications may need information about the pedigree and provenance
of components such as how they were built.

3. End-of-life dates and the ability to indicate what technologies a component supports
would be useful for multiple applications.

4. Implemented Technologies. Groups of components (around technologies or other
concepts) could be implemented through the proposed recursive relationship model,
treating technology as an upstream component. For example, “component X implements
DNS” allows the user to identify all DNS-relevant components.

Figure 2 illustrates the relationship between baseline SBOM information and additional
information required to enable different applications.

Final Draft 0.4 11

Final Draft 0.4

Figure 2: Example relationships between baseline and additional information

3 Data Formats
Much of the benefit of software transparency described in this document (and the
accompanying Use Cases document) are easier to realize if SBOM data can be generated,
shared, and processed by machine. This requires widespread interoperability across the supply
chain which, in turn, requires standardized data formats.

Stakeholders formed a working group to explicitly set out to map existing standards that might
be used. No single widely used standard was explicitly designed to only address SBOM use
cases. However, working group identified two formats in widespread use: SPDX, an open
source machine-readable format stewarded by the Linux Foundation, and SWID, an
international XML-based standard used by commercial software publishers and adapted by
NIST. It became apparent that both standards can cover the basics of the baseline SBOM, and
each have their own advantages and proponents; it seems unlikely in the near future that one
will supplant the other across the entire software ecosystem.

Final Draft 0.4 12

Final Draft 0.4

Both formats focused on the core problem of identifying software entities and conveying
associated metadata, and had the requisite fields to cover the needs for the baseline SBOM.
Moreover, stakeholders were able to generate a mapping between SPDX and SWID covering
the baseline SBOM. Thus, while different communities select the format that meets their needs,
the baseline SBOM data can carry across the supply chain through straightforward translation.
For more information about SPDX, SWID, and other existing SBOM formats, please see
“Survey of Existing SBOM Formats.”

4 SBOM Processes
This section describes SBOM use in business processes from three stakeholder perspectives:
those who Produce, Choose, and Operate software. These perspectives are described in detail
in “Roles and Benefits for SBOM Across the Supply Chain.” 10

The section highlights when and how an SBOM is created along with how it can be exchanged.
Finally, a couple of real-world examples of applications are explored in detail here to understand
specific scenarios like “License Management” and “Vulnerability Management” so you can see
SBOM use as an independent data source as well as SBOM’s applications to other datasets in
typical business processes.

An SBOM, as depicted in section 2 of this document, includes much more descriptive
information as well as aggregated information from other software as components. Each such
components can also be an SBOM with one or more sub-components. SBOM then becomes a
rich document that carries sufficient information to address many of the business process needs
that involve producing, choosing or operating software. The SBOM’s lifecycle (creation, updates
and retirement) and exchange methods proposed here make it possible to support the business
needs of a modern dynamic software driven industry.

4.1 SBOM Creation: How
To create an SBOM, the supplier assembles the baseline component information, optional
attributes, and a list of any directly included components. The SBOM will then be assembled
using tools constructed as integral to the supplier’s software build process. Where SBOMs for
included components are readily available, they can be included directly into the newly created
SBOM. Where such information is not available, the supplier will provide “best efforts” SBOMs,
which will be indicated by the fact that the Author for an included component SBOM will not be
the same as the supplier of the component..

Any entity creating, modifying, and packaging/delivering components is considered to be a
supplier and is therefore responsible for creating SBOMs. This includes also system integrators
who are essentially considered suppliers for SBOM purposes.

10 https://docs.google.com/document/d/16hUeVaAuIFs6gbTkZ2u_34iOY_t0TDFKRi_IxF3gm0E

Final Draft 0.4 13

https://docs.google.com/document/d/16hUeVaAuIFs6gbTkZ2u_34iOY_t0TDFKRi_IxF3gm0E/edit#

Final Draft 0.4

SBOM will include a number of defined attributes to identify components that were included in
the software. Some of these attributes are mandatory while others are optional. In every case,
SBOM serves as a system of record or authoritative source of information about software.
However, some of this information may need to be validated with other external sources, for
e.g., vulnerability information of a component can be derived from the National Vulnerability
Database (NVD) using the component identified. The standards document also provides further
details of these attributes in order to satisfy pressing business processes such as License
Management and Vulnerability Management discussed here.

4.2 SBOM Creation: When
A new SBOM should be created for every new release of a component. Changes to
components require corresponding changes to SBOMs. Changes to components are often
marked as updates or upgrades, releases of new versions, and patches.

A new SBOM should also be created when information about included components changes,
even if the components themselves have not changed. For example, an upstream component is
patched, or start providing SBOMs (thus removing the need for their downstream consumers to
make SBOMs for themselves). In the former case, the underlying software is changed; in the
latter, we have more information about the software, but still update the SBOM to pass this
information along. This is essential for the SOM to serve as the authoritative source of the
information on the current state of the software that will be packaged, delivered and used.

4.4 SBOM Exchange
It is necessary to exchange SBOM information. The primary exchange is directly from a supplier
to a consumer with a single downstream supply chain hop. As part of delivering the component,
the supplier also delivers the SBOM, or a means by which the user can easily obtain the SBOM,
such as a URL or other reference. This direct delivery does not preclude aggregation or
cataloging of SBOM information by suppliers, consumers, or others.

Due to the variety of different software and device ecosystems, it is unlikely that one SBOM
exchange mechanism will suffice. Some existing formats, namely SWID and SPDX, are
provided as additional files as part of a component distribution or delivery. For devices with
storage and power constraints, an option is to provide a URL with a unique ID to look up SBOM
information on a supplier’s website. Dynamic access to an SBOM may be a good option for
such devices as well. Protocols such as ROLIE, OpenChain and ATOM can be leveraged to
exchange large amounts of information with the ability to collect it on-demand and in an efficient
manner. The availability of SBOM using some of these dynamic protocols (for environments
such as software development environments to asset management systems) will be a key to
continued adoption of the SBOM.

Final Draft 0.4 14

Final Draft 0.4

4.5 Network Rules
Participants in an SBOM system include suppliers creating SBOM information and consumers
receiving it. In many cases, one entity will be serving both these functions as software is many
times made of other software. Participants follow a set of network rules to ensure SBOMs are
both viable and useful to all parties in the ecosystem.

An SBOM lists components that can be

1. Originally created de novo by a supplier who is the authoritative source of the software
2. Integrated as a component from an upstream supplier who also provides an SBOM
3. Integrated as a component from an upstream supplier who does not provide an SBOM

Suppliers create SBOMs for the components the suppliers define. As described in the earlier
sections on component relationships, an SBOM must list at least one primary component,
identifying the SBOM itself as a component.

As part of delivering components to users, the supplier also delivers the associated SBOM(s), or
provides a means for the consumer to easily obtain SBOMs. SBOMs include both components
that the supplier originally creates and components that the supplier obtains from other
suppliers.

In this tree (or graph) structure, ultimate upstream or root suppliers only create original 11

components and do not include components (have dependencies) from any other supplier.
Components flow downstream from these root suppliers throughout the graph. At the bottom of
the (upside down) tree, leaf consumers only obtain components and SBOMs and do not
produce components or create SBOMs. Throughout the middle of the tree, most participants act
as both suppliers and consumers. Even end-user organizations may act as suppliers, producing
SBOMs for in-house components or external components such as mobile applications or
devices.

Suppliers are responsible for components they create and those they include. Suppliers are also
responsible for providing the collected set of components to their downstream consumers. In a
macroeconomic sense, suppliers are the least cost avoiders, since they have high quality
authoritative information about their components and low costs to generate and share that
information. This model also distributes the cost to produce SBOM information across software
supplier markets.

In this network, there are some scenarios where a supplier may create SBOMs for third-party
components where the supplier is only acting as the author of the SBOM and not the creator of
the software. A supplier can create as many third-party SBOMs as they choose, with or without
dependency relationships. When a supplier creates such SBOMs, the supplier is expected to be

11 The tree is likely a directed acyclic graph. Consider an upside down tree, root supplier nodes have no
parents and leaf consumer nodes have no children.

Final Draft 0.4 15

Final Draft 0.4

be clear that they (the author of the SBOM) are not the supplier of the component. This informs
consumers of the lack of first-hand authoritative SBOM information. In such a case, the Author
Name (2.2.1) and Supplier Name (2.2.2) would be different.

The concepts around SBOM exchange and network rules are designed so that consumers can
obtain comprehensive lists of the components they use across different suppliers and supply
chains. Figure 3 expands the example in Figure 1 to show a consumer connected to two
different supply chains. The consumer in this example would have two SBOMs, one in Table 2
and one in Table 3.

Figure 3: Consumer tree with two supply chains

Final Draft 0.4 16

Final Draft 0.4

Relationship Component Name Supplier
Name

Version
String

Author Hash UID Relationship
Assertion

self Nancy’s Software Nancy 1.1 Nancy 0x523 237 Some

includes |-- Oscar’s Open Library Oscar 2.1 Nancy 0xA23 394 No assertion

implements |-- Paul’s Protocol Paul 2018 Nancy 0xB23 934 None

Table 3: SBOM table representation for Nancy’s Software

4.6 Roles and Perspectives

4.6.1 Perspectives
Different stakeholders will use SBOMs in complementary yet distinct ways. The “Roles and
Benefits for SBOM Across the Supply Chain” document suggests three perspectives: those who
produce, choose, and operate software.

4.6.1.1 Produce
Producers of software are typically, but not always, suppliers. A goal of this SBOM systems is
that all producers create SBOMs for their components, however, there may be cases in which
one supplier authoring an SBOM will have to create an SBOM for another supplier’s component.

While some suppliers may be reluctant to share SBOM information with their customers, there is
no doubt that suppliers benefit from receiving SBOMs associated with 3rd party components that
were included in their products. Suppliers will surely benefit in many scenarios due to the clarity
that will be brought by having an SBOM. In the case where a supplier does not provide detailed
information of the sub-components there is a higher likelihood of lack of clarity causing the user
to assume the worst about the unknown parts of the product.

Additional benefits to suppliers include the ability to determine which organization to contact to
get fixes for published CVEs of 4th+ party components that have had recent fixes published for
specific CVEs.

A key problem occurs when scanners run by a supplier or supplier's customers, indicate that
CVE fixes are missing for Components in their distribution. The problem is that unless the
Components are all directly included, the supplier does not know which directly included
Components include the Sub-components missing CVE fixes. SBOMs solve this problem when
the full SBOM hierarchy is available since that will indicate which directly included Component
suppliers need to be contacted for the CVE fixes.

Even better, if the SBOM (or associated information) contains information that the CVEs cannot
be exploited via any of the directly included components, the product Supplier knows that no

Final Draft 0.4 17

Final Draft 0.4

fixes are necessary. This is a huge benefit for both suppliers, who will not have to create fixes
and their customers, who will not have to supply them.

4.6.1.2 Chose
SBOMs can be used by prospective choosers (such as acquisition office) considering the use of
a component or product that has an associated SBOM. These users are likely to be interested
in information directly attributable to the product, such as its baseline component information or
license information.

Information such as licensing information, CVE related information or product lifecycle
information can be readily used to determine if a prospective user will choose the product or not.

In the license management use case, the prospective user has visibility into the license of every
constituent component for a Product under consideration for use in addition to the Product itself.
This will give the user greater awareness when choosing a product and its appropriate license
arrangement for the business need or application.

In the vulnerability management use case, the prospective user may use the baseline
component information to identify the history of published vulnerabilities for a product and the
timeliness of the vendor’s response to these vulnerabilities. This allows the “Chooser” to make
an informed decision with consideration given to the product’s security lifecycle. .

4.6.1.3 Operate
In any industry, “Operations” suffers primarily due to a lack of complete information on
components or products they are expected to support. An SBOM becomes a very relevant
source of this information to provide visibility into the software and its components. Some of this
information may be static, such as licensing information. However, due to the dynamic nature
of software, some of this information may change or be updated after a product’s initial
distribution.

Most of the information of ongoing interest for “Operators” is expected to be found in SBOM
updates. Operators can also use the current information to verify the state of the software
before it is to be in production at their site or business.

4.7 Applications
The focus of the SBOM is on the core capability of identifying components and their
relationships. Many use cases that rely on the baseline SBOM require additional information in
order to function. In this section several major applications of the SBOM have been highlighted:

1. Vulnerability Management: Vulnerability management is one of the more prominent
applications. Today, it is often an expensive archeological investigation to determine if a
vulnerable sub-component is used, and if the vulnerability transitively makes the parent

Final Draft 0.4 18

Final Draft 0.4

component vulnerable. [cite wysopal] SBOM data helps suppliers, users, and other
defenders more quickly and accurately assess the risk posed by vulnerable components
otherwise hidden behind supply chain relationships. It works with the principle that you
cannot protect what you do not understand.

2. Intellectual Property: There are a number of intellectual property applications that could
be improved with better inventory data. Managing software licensing -- constraints on
use or redistribution -- for included components, and tracking entitlement (permission to
use copies or features of components) are some of the existing applications. A notable
market exists for software composition analysis tools to help determine the contents of
components. SBOM data would improve intellectual property applications.

3. High Assurance: High assurance of the source and integrity of components.
Provenance and pedigree. Requires further information about suppliers, how
components are built, the chain of custody as components move through the supply
chain, how any modifications are made.

4. Better knowledge of components also supports supplier and supply selection.

See also “Roles and Benefits for SBOM Across the Supply Chain.”

4.8 Tool Support
Adoption is surely the key for SBOM to become effective and mature to meet these business
needs and applications that are laid out through this section. Only a few suppliers and
associated customers can justify the development of SBOM creating tools (e.g., swid-tools and 12

swidGenerator). These tools can automatically generate SBOMs and can also collate related 13

information on components and subcomponents.

To support the adoption of SBOM, tools to analyze and correlate SBOM information will be
necessary. In many cases, build and development tools should be updated to produce SBOM
information.

5 Terminology
The following terms have specific meaning within the scope of this document and within the
overall multistakeholder process. Each definition is written to be a “drop-in” gramatical
replacement for the term.

5.1 SBOM
(Software Bill of Materials)

12 https://apps.fedoraproject.org/packages/swid-tools
13 https://github.com/strongswan/swidGenerator

Final Draft 0.4 19

https://apps.fedoraproject.org/packages/swid-tools
https://github.com/strongswan/swidGenerator

Final Draft 0.4

list of one or more identified components and other associated information

The SBOM for a single component with no dependencies is just the list of that one component.
“Software” can be interpreted as “software system,” thus hardware (true hardware, not firmware)
and very low-level software (like CPU microcode) can be included. The primary focus of this
effort is software components, however hardware is not excluded.

5.2 Component
unit of software defined by a supplier at the time the component is built, packaged, or delivered

A product is a component. So is a library. So is a single file. So is a collection of other
components, like an operating system, office suite, database system, car, an ECU in a car, a
medical imaging device, or an installation package. In SPDX terms “package,” “file,” and
“snippet” map to “component.” In SWID terms: “<softwareIdentity> @name.” While “component”
is defined and intended to represent compiled or binary code, source code is not excluded.

5.3 Author
entity that creates an SBOM

Note: When author and supplier are different, this indicates that one entity (the author) is
making claims about components created or included by a different entity (the supplier).

5.4 Supplier
entity that creates, defines, and identifies components and produces associated SBOMs

A supplier may also be known as a manufacturer, vendor, developer, integrator, maintainer, or
provider. Ideally, all suppliers are also authors of SBOMs for the suppliers’ components. Most
suppliers are also consumers.

5.5 Consumer
entity that obtains SBOMs

An entity can be both a supplier and consumer.

Final Draft 0.4 20

Final Draft 0.4

6 Background

6.1 Overview
On July 19, 2018, the National Telecommunication and Information Administration (NTIA)
convened a meeting of stakeholders from across multiple sectors to begin a discussion about
software transparency and the proposal being considered by various government agencies that
a common structure for describing the software components in a product containing software.
The output of this meeting was to create a number of task groups, which then led to a report
produced by each of these groups. This report is the output of the “Understanding the Problem”
task group and seeks to (1) describe the problems that are initiating the need for a software bill
of materials (SBOM), (2) what an SBOM baseline document should include, and (3) an overview
of supporting processes to manage SBOMs. The additional reports from the other task groups
may be found at https://www.ntia.doc.gov/SoftwareTransparency.

Understanding the Problem (Framing)
Describe the scope of the idea of software transparency and the problems it seeks to
solve, including how SBOM data might be shared. Outputs included (1) a description of a
baseline SBOM elements, (2) identification of goals, problem statement, and scope, (3)
useful terminology, and (4) outline of basic process and implementation guides.

Use Cases and State of Practice
Focused on identifying use cases, current and possible future, where SBOMs or similar
data is used to achieve various goals. Through review of the current state of practice,
outputs were developed to identify what works today and describe barriers to success.

Standards and Formats
Investigated existing standards and initiatives as they apply to identifying the external
components and shared libraries, commercial or open source, used in the construction
of software products. The group analyzed efforts underway in the community and
industry related to assuring this transparency is readily available in a machine-readable
manner.

Healthcare Proof of Concept
A collaborative effort between healthcare delivery organizations and medical device
manufacturers that established a prototype SBOM format and exercised use cases for
SBOM production and consumption. The goal was to demonstrate successful use of
SBOMs and relate to the overall cross-sector effort to establish standardized formats
and processes.

Final Draft 0.4 21

https://www.ntia.doc.gov/SoftwareTransparency

Final Draft 0.4

6.2 Mission Statement
The mission of the NTIA multistakeholder process on Software Component Transparency is to:

Explore how manufacturers and vendors can communicate useful and actionable
information about the third-party and embedded software components that comprise
modern software and IoT devices, and how this data can be used by enterprises to
foster better security decisions and practices.

(Source: https://www.ntia.doc.gov/SoftwareTransparency)

The goal of this process is to foster a market offering greater transparency to organizations, who
can then integrate this data into their risk management approach.

6.3 Scope
The scope of this initiative will include the definition of the structure of a Software Bill of Material
(see Section 5 Terminology for definition), how it can be shared, and how it can be used to help
foster better security decisions and practices. To make the SBOM useful, this initiative will also
need to outline the applicable use cases to ensure that the output is useful for all stakeholders.

All industries utilizing or producing software should be considered in the scope of this initiative,
including automotive, financial, healthcare, operational technology (OT) and “traditional” IT. The
focus is on software, the “S” in SBOM. While we do not specifically account for hardware,
software doesn’t run by itself. A software system requires not only traditional computing
hardware (e.g., CPUs, memory, disk, network, etc) but also functional hardware that makes
devices actually work, such as actuators and sensors.

This effort will focus on a limited scope of addressing the creation of a harmonized SBOM that
will aid in the sharing of software component information. There are, however, related
dependencies and supporting activities that should be considered and will need to be addressed
outside of this scope in order to fully realize a holistic solution to the need for software
transparency:

● Lists of known vulnerabilities (e.g., CVE)
● Mapping vulnerabilities to components
● Conveying the transitive exploitability or exposure of vulnerabilities through supply

chains
● Standardized sharing mechanism for SBOMs

Learning from principles of supply chain management in other fields, this effort is focused on
harmonizing how to describe software components in the form of an SBOM. The intention is to
improve how information is shared about the software that we build, acquire, operate, and
depend on.

Final Draft 0.4 22

https://www.ntia.doc.gov/SoftwareTransparency

Final Draft 0.4

7 Conclusion
Organizations across the globe face operational and supply chain related questions about
whether the software they are using to do their day-to-day work and support their ongoing
business areas contains known vulnerabilities. They are also trying to understand if software
they are using is authentic and unaltered, its use is proper and legal, and they are approaching
obsolescence or end-of-life issues with the software upon which they depend. As software is
being used to run more and more of the critical aspects of organization’s business and systems
these become increasingly pressing and unavoidable questions for almost everyone.

To be useful to end-user organizations an SBOM needs to include the basic information that
enables correlating and connecting related information about the software as it moves through
the supply chain and into operations. It is also critical that the SBOM be as small and concise as
possible to help ease the integration and adoption and keep management of SBOM data as
simple as possible. This is the reason that this effort sought to identify a most basic baseline
SBOM, with only a few required attributes. As noted in this document, however, restricting an
SBOM to only these baseline expectations will restrict the number of valid use cases achievable
through the use of SBOMs. To be operationally useful any organization planning to utilize
SBOMs for security of their systems will need to have activities that can connect the information
in the SBOMs to their vulnerability management activities, but that mapping is a separate
activity, one enabled and enhanced by future pervasive existence of SBOMs for all of the
software in the enterprise.

While the use of SBOMs will not solve all security issues facing each of the industries involved
in this initiative, it will help to increase transparency and better arm those defending their
organizational networks and systems from new threats. As this space matures, the ready
availability of SBOMs will hopefully then lead to further work in establishing more coordinated
and standardized methods of sharing and managing the information stored in SBOMs. One of
the reasons to standardize the structure and content of the SBOM is to allow for this next step.
Tooling will likely be a major factor in the advancement in the area of SBOM management.

Overall, the goal is to ensure that the necessary information, as intended to be captured by the
SBOM, is available to those who need it, thereby leading to better security management.

As software touches every area of our modern lives and is constantly evolving, SBOM si likely to
take a similar path in becoming more applicable to our modern world. As SBOM applications
and capabilities are exposed, various stakeholders are bound to find ways to extend it either
using external data (such as vulnerability datate) or maturing what has been framed in this
document. Adoption, tooling, and community efforts such as this one are expected to provide
the bulk of this ongoing development to evolve SBOM to our modern software-driven world.

Final Draft 0.4 23

Final Draft 0.4

8 Acknowledgements
The chairs of the Framing Working group, Michelle Jump and Art Manion, thank the working
group membership for their time and effort. Acknowledgement does not imply endorsement of
the text.

Josh Corman
Christopher Gates, Velentium
Les Gray, Abbott
Ed Heierman, Abbott
JC Hertz
Kent Landfield
Eliot Lear
Bruce Lowenthal
Chujiao Ma
Bob Martin, MITRE Corporation
Chandan Nandakumaraiah, Juniper Networks
Vijay Sarvepalli
Kate Stewart, The Linux Foundation

The working group also recognizes and appreciates the efforts of Allan Friedman and Megan
Doscher of the National Telecommunications and Information Administration.

Final Draft 0.4 24

