REPORT FILE COPY DO NOT REMOVE OT/ITS RR 11

A UNITED STATES DEPARTMENT OF COMMERCE PUBLICATION

TELECOMMUNICATIONS Research Report

U.S. DEPARTMENT OF COMMERCE OFFICE OF TELECOMMUNICATIONS Institute for Telecommunication Sciences

A Wave Hop Propagation Program for an Anistropic Ionosphere

L. A. BERRY

J. E. HERMAN

BOULDER, COLORADO APRIL 1971

OFFICE OF TELECOMMUNICATIONS

The Department of Commerce, under the 1970 Executive Order No. 11556, has been given the responsibility of supporting the Government in general and the Office of Telecommunications Policy in particular in the field of telecommunications analysis. The Department of Commerce, in response to these added duties, instituted the Office of Telecommunications as a primary operating unit to meet the demands of telecommunications in the areas of economic, sociological and regulatory research and advice. The Office consists of three units as follows:

Frequency Management Support Division: Provides centralized technical and administrative support for coordination of Federal frequency uses and assignments, and such other services and administrative functions, including the maintenance of necessary files and data bases, responsive to the needs of the Director of the Office of Telecommunications Policy (OTP) in the Executive Office of the President, in the performance of his responsibilities for the management of the radio spectrum.

Telecommunications Analysis Division: Conducts technical and economic research and analysis of a longer term, continuing nature to provide information and alternatives for the resolution of policy questions, including studies leading to the more efficient allocation and utilization of telecommunication resources; provides forecasts of technological developments affecting telecommunications and estimates their significance; provides advisory services in telecommunications to agencies of Federal, State and local governments; and performs such other analysis as is required to support OTP.

Institute for Telecommunication Sciences: The Institute for Telecommunication Sciences (ITS), as a major arm of the Office of Telecommunications, is the central Federal agency for research on the transmission of radio waves. As such, ITS has the responsibility to:

(a) Acquire, analyze and disseminate data and perform research in general on the description and prediction of electromagnetic wave propagation, and on the nature of electromagnetic noise and interference, and on methods for the more efficient use of the electromagnetic spectrum for telecommunication purposes;

(b) Prepare and issue predictions of electromagnetic wave propagation conditions and warnings of disturbances in those conditions;

(c) Conduct research and analysis on radio systems characteristics, and operating techniques affecting the utilization of the radio spectrum in coordination with specialized, related research and analysis performed by other Federal agencies in their areas of responsibility;

(d) Conduct research and analysis in the general field of telecommunication sciences in support of other Government agencies as required; and

(e) Develop methods of measurement of system performance and standards of practice for telecommunication systems.

This Telecommunications Research Report series is the primary vehicle for early or detailed dissemination of results of research and analysis projects.

U.S. DEPARTMENT OF COMMERCE Maurice H. Stans, Secretary

OFFICE OF TELECOMMUNICATIONS Armig G. Kandoian, Director INSTITUTE FOR TELECOMMUNICATION SCIENCES Richard C. Kirby, Director

OT/ITS RESEARCH REPORT 11

A Wave Hop Propagation Program for an Anistropic Ionosphere

L. A. BERRY

J. E. HERMAN

INSTITUTE FOR TELECOMMUNICATION SCIENCES BOULDER, COLORADO 80302 April 1971

For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. 20402 (Order by Stock No. 0300-0316) – Price \$1.00

TABLE OF CONTENTS

		Page
AB	STRACT	1
1.	INTRODUCTION	~ 1
2.	THE PHYSICAL PROBLEM AND THE MATHEMATICAL MODEL	2
3.	 DETAILS OF THE MATHEMATICAL SOLUTION 3.1 Notation 3.2 The Ground-Wave 3.3 The Wave Hops 3.3.1 Geometrical Optics 3.3.2 Saddle Point Approximation 3.3.3 Numerical Integration 3.4 Residue Series 3.4 Ionospheric Reflection Coefficients 	6 7 7 8 9 11 11 15
4.	 NOTES ON COMPUTER IMPLEMENTATION 4.1 Program Organization and Flow 4.1.1 Numerical Integration Branch 4.1.2 Residue Series and the Subroutine LPAINR 4.2 Input Data and a Test Case 4.3 Important Compiler Characteristics 4.4 FORTRAN Listing of PROGRAM ANIHOP and Its Subroutines 	16 16 16 18 18
5.	ACKNOWLEDGMENTS	19
6.	REFERENCES	60
7.	 APPENDIX: AN IONOSPHERIC REFLECTION COEFFICIENT PROGRAM 7.1 General Description 7.2 A Sample Case 7.3 Mathematical Details of Reflection Coefficient Calculation 7.4 FORTRAN Listing of Program ANIREF and Its Submative 	62 62 63 64
	Subroutines	75

FOREWORD

This work was performed for the Defense Atomic Support Agency, under the direction of Mr. Dow E. Evelyn, HQ, DASA.

A WAVE HOP PROPAGATION PROGRAM FOR AN ANISOTROPIC IONOSPHERE

Leslie A. Berry and J. E. Herman

This report documents a digital computer program for computing the propagation of LF and VLF radio waves using the wave hop theory. It supersedes NBS Report 8889. The documentation includes a description of the physical model, detailed mathematical formulas, a main function flow chart, a listing of the FORTRAN source deck, and the input and output of a sample case.

1. INTRODUCTION

This report documents a computer program for the full wave calculation of LF and VLF radio propagation under and anisotropic ionosphere using the wave hop theory. It supersedes NBS Report 8889, "FORTRAN Programs for Full-Wave Calculation of LF and VLF Radio Propagation"

(Berry and Chrisman, 1965a). The revision is necessary because the original program was based on a formulation that is incorrect for an anisotropic ionosphere (see Berry, et al. (1969) for details). The error was significant if the magnitudes of the ionospheric polarization coupling (conversion) coefficients were comparable to those of the reflection coefficients. The program and all its subroutines have been completely rewritten in a more modern version of FORTRAN (CDC FORTRAN 63) and a number of improvements suggested by users have been incorporated.

The next section explains the concepts and model used, so that you will know when it is appropriate to use the program, how to determine the model, and what input information you must provide. Section 3 contains detailed mathematical formulas used, and section 4 describes the computer implementation. This last section includes a test case and a listing of the FORTRAN source deck.

An ionospheric reflection coefficient program which can be used to generate input data for the propagation program is described in the appendix.

2. THE PHYSICAL PROBLEM AND THE MATHEMATICAL MODEL

The problem solved by the computer program can be stated as follows:

<u>Given</u>: A ground-based source of vertically polarized radio waves¹ of known frequency in the LF-VLF band, the electrical constants of the ground and the reflection characteristics of the ionosphere along a great circle path.

<u>Calculate:</u> The amplitude and phase of the propagated vertical electric field on the earth's surface as a function of distance along the path.

The geometry of the assumed model is shown in figure 1. The earth is a smooth sphere with radius a and electrical constants σ (conductivity) and ε (dielectric constant). The ionosphere is concentric with known reflection properties characterized by the ionospheric reflection coefficient matrix $\underline{T}(\varphi)$, where φ is the angle of incidence of a wave on the ionosphere. The height of the ionosphere above the earth, h, can be thought of as the virtual, or phase, height. Distance, d, is measured along the ground; we also use the angular distance $\theta = d/a$.

We compute the vertical (radial) electric field at O due to a vertically polarized source at S. The field is the vector sum of several components which travel to O via different paths:

$$E(d) = \sum_{j=0}^{J} E_{j}(d)$$
, (1)

where the subscript j counts the number of times the energy has been reflected from the ionosphere. Thus, E_0 is the ground wave that travels directly along the surface of the earth from S to O. E_1 is the "first hop" (shown as the solid line in figure 1) which has reflected once from the ionosphere; E_2 is the "second hop" (shown as the dashed line in ¹Lewis (1970) derives wave hop formulas for an elevated, arbitrarilyoriented dipole.

Figure 1. Geometry for wave hop propagation model.

3

.

figure 1); and so forth. The angle of incidence of the path of the j-th hop on the ground is denoted T_j ; the angle of incidence on the ionosphere is denoted φ_j .

The theory is developed by Wait (1961), Berry (1964), and Berry et al. (1969), and the propagation characteristics of the wave hops are discussed by Berry (1964, 1967) and Johler (1970). Wave hop theory is most appropriate at LF (30-300 kHz) for distances less than, say, 6000 km. At lower frequencies a VLF waveguide mode theory (Wait, 1968 and references cited therein; Pappert, 1968) program is usually more appropriate, especially for long paths, although the wave hop program will compute fields correctly down to a few kilohertz and out to distances beyond 10,000 km. This conclusion is illustrated by Morfitt and Halley (1970) who compare fields calculated using this wave hop theory with fields calculated using the NEL mode theory program (Sheddy et al., 1968).

To use the program, you must specify:

- (a) The transmitter's operating frequency and effective radiated power.
- (b) The ground conductivity and relative dielectric constant. These are assumed to be constant along the path. If the conductivity varies significantly along the path, the geometric mean of the path conductivities is a useful approximation. Morgan (1968) provides a worldwide VLF effective-conductivity map which is also useful at low LF. At high LF and above, conductivity maps prepared for MF frequencies, such as that prepared by Barghausen, et al. (1966) may be more appropriate.
- (c) Ionospheric reflection coefficients as a function of angle of incidence. The coefficients should be given for the

entire range of angles of incidence that will be encountered by the program during execution. Belrose (1968), Watt (1967), and Berry and Chrisman (1965b) show graphs of the angle of incidence for various distances and reflection heights. The appendix of this report contains a reflection coefficient program that can be used to compute reflection coefficients for any given ionospheric profile, or reflection coefficients from different sources can be used. Belrose (1968) shows empirically derived reflection coefficients for frequencies in the upper LF and MF bands.

- (d) The distances of interest. These are given by a minimum distance, a distance increment, and a maximum distance.
- (e) The number of hops to be computed and summed. The number may be different for each of five (or fewer) distance ranges, because fewer hops are necessary at short ranges. The number of hops necessary for the series in (1) to converge depends on the amplitude of the ionospheric reflection coefficients, the ground conductivity, and the frequency. The amplitude of the individual terms in (1) are printed out, so it is possible to determine, <u>after the fact</u>, if enough terms were used, but advance determination of the minimum number of hops necessary still requires judgement. For daytime ionospheric reflection coefficients a crude rule-of-thumb is: number of hops = (distance in Mm) + 1. Fewer hops are needed at high LF, more are needed at night.

3. DETAILS OF THE MATHEMATICAL SOLUTION

3.1 Notation

f = frequency, Hz

- P_r = effective radiated power, watts
 - d = distance along the great circle path, m
- a₁ = earth's radius ≈ 6.36739 (10⁶), m
- h = phase reference height of ionosphere (loosely, "reflection height")
- c = speed of light $\approx 2.997925 (10^8)$ m/s

$$\mu_0 = 4\pi (10^{-7})$$

- $\sigma =$ ground conductivity, mho/m
- ε = relative dielectric constant of ground

 T_{ee} , T_{em} , T_{me} , T_{mm} are ionospheric reflection and conversion coefficients (Johler and Harper, 1962). The subscripts indicate which vector (electric or magnetic) is in the plane of incidence; the first subscript refers to the incident wave and the second to the reflected wave. The equivalence to a more common notation is: $T_{ee} = \frac{R_{11}}{||}$, $T_{em} = \frac{R_{12}}{||R_{11}|}$, $T_{me} = \frac{R_{11}}{|R_{11}|}$, $T_{me} = \frac{R_{11}}{|R_{12}|}$, $T_{me} = \frac{R_{11}}{|R_{12}|}$.

 φ = the angle of incidence on the ionosphere (2)

$$\omega = 2\pi f, \ k = \omega/c \tag{3}$$

$$k_{z} = \sqrt{k^{2} \varepsilon - i \mu_{0} \omega_{c}} = k \sqrt{\varepsilon - i \frac{\mu_{0} c^{2} \sigma}{\omega}}$$
(4)

$$\mathbf{a}_{2} = \mathbf{a}_{1} + \mathbf{h} \tag{5}$$

$$v = (ka_1/2)^{\frac{1}{3}}$$
 (6)

$$x = v\theta$$
, $y = (kh/v)$ (7)

 $z = 1.25/v^{2}$

$$q_{e} = -iv \frac{k}{k_{2}} \sqrt{1 - \left(\frac{k}{k_{2}}\right)^{2}}$$
(8)

$$q_{m} = -iv \frac{k_{2}}{k} \sqrt{1 - \left(\frac{k}{k_{2}}\right)^{2}}$$

 $\theta = d/a_1, x = v\theta$ (9)

$$F = 30 \sqrt{\frac{\pi P_r}{120}}, \quad G = \frac{e^{-ikd+i\pi/4}}{d} \sqrt{\frac{\theta_x}{\pi \sin \theta}} \cdot \frac{F}{2}.$$
 (10)

3.2 The Ground-Wave

The first term of (1) is the ground wave, E_0 . It is given by (compare Wait (1962), Fock (1964))

$$E_{0}(d) = -4\pi G \sum_{s} (1+zt) \left(1 + \frac{3+i \cot \theta}{8ka_{1} + vt_{s}}\right) \frac{e^{-i xt_{s}}}{t_{s} - q_{e}^{2}} .$$
(11)

The $t_{\,\text{s}}\,\,\text{satisfy}$

$$W_1'(t_s) - q_e W_1(t_s) = 0$$
, (12)

where $W_1(t)$ is the Airy function of the first kind defined by Wait (1962), and the t_s are numbered in order of increasing magnitude of the imaginary part. The first two factors in the s-th term differ from unity by a few percent, at most, and are frequently neglected in ground wave calculations.

3.3 The Wave Hops

For $j \ge 1$ in (1), the wave hops are (Berry, et al., 1969)

$$E_{j} = I_{j1} T_{ee}^{j} + \sum_{M=2}^{j} I_{jM} C_{jM}$$
, (13)

where

$$C_{jM} = \sum_{k=1}^{M-1} a_{jMk} T_{ee}^{j+1-M-k} (T_{em} T_{me})^{k} T_{mm}^{M-1-k}.$$
(14)

Then

$$a_{jM1} = j - M + 1$$
, (15)

and

$$a_{jMk} = \frac{(j+2-M-k)(M-k)}{k(k-1)} a_{jM(k-1)}$$
 for $k \ge 2$.

Both I_{jM} and the T_{ik} are implicit functions of d. The functions are made explicit below, beginning with the path integrals, I_{jM} .

The basic formula is (Berry, et al., 1969)

$$I_{j^{M}} = G \int_{\Gamma} (1 + zt) e^{-ixt} W_{1}(t) W_{2}(t) (1 + R_{e})^{2} p^{j} R_{e}^{j-M} R_{m}^{M-1} dt , \quad (16)$$

where the ground reflection coefficients are

$$R_{i} = -\frac{W_{2}(t)/W_{2}(t) - q_{i}}{W_{1}(t)/W_{1}(t) - q_{i}} , i = e \text{ or } m , \qquad (17)$$

 and

$$p = \frac{W_{2}(t) W_{1}(t - y)}{W_{1}(t) W_{2}(t - y)} .$$
 (18)

 Γ runs from ∞ to 0 and down into the third quadrant to $\infty e^{-i2\pi/3}$. However, (16) is an approximation to an integral involving Hankel functions of complex order (Berry, 1964; Berry and Chrisman, 1965c), and the approximation is valid only if $\cos \tau_{1}$ is small (refer to figure 1).

3.3.1 Geometrical Optics

For short distances, cos τ_j is <u>not</u> small so we use the geometrical optics formula:

$$I_{jM} \approx -i F \frac{e^{-ikD_j}}{D_j} B_j \sin^2 \tau_j (1 + \hat{R}_e)^2 \hat{R}_e^{j-M} \hat{R}_m^{M-1}$$
, (19)

where

$$D_{j} = 2j \sqrt{2a_{1}a_{2}(1 - \cos\frac{\theta}{2j}) + h^{2}}$$
, (20)

$$\sin \tau_{j} = \frac{2j}{D_{j}} a_{z} \sin \frac{\theta}{2j} , \qquad (21)$$

$$\cos \varphi_{j} = \frac{D_{j} + 2ja_{1} \cos \tau_{j}}{2ja_{2}} , \qquad (22)$$

and the convergence-divergence coefficient is

$$B_{j} = \frac{a_{2}}{a_{1}} \sqrt{\frac{D_{j} \sin \tau_{j} \cos \varphi_{j}}{a_{2} \sin \theta \cos \tau_{j}}}.$$
 (23)

The Fresnel ground reflection coefficients are

$$\hat{R}_{i} = \frac{s + q_{i}}{s - q_{i}}, \text{ where } s = iv \cos \tau_{j}$$
(24)

3. 3. 2 Saddle Point Approximation.

The relationship between (19) and (16) was shown by Wait (1961). Following his derivation, change the contour Γ so that we integrate from - ∞ to ∞ . Since we cross no singularities with this move, it only changes the sign of (16). Then, if (-t) >>1,

$$W_{k}(t) \approx \left(-\overline{t}\right)^{\frac{1}{4}} \exp \left[\left(-1\right)^{k} i\left(\frac{2}{3}\left(-t\right)^{\frac{3}{2}} + \frac{\pi}{4}\right)\right]$$

and

Substitution into (16) yields

$$I_{jM} \approx -G \int_{-\infty}^{\infty} e^{-i\Omega(t)} (1+zt) (-t)^{\frac{1}{2}} (1+R_e)^2 R_e^{j-M} R_m^{M-1} dt, (26)$$

where

$$\Omega(t) = xt - j\frac{4}{3}(-t)^{\frac{9}{2}} + \frac{4}{3}j(y-t)^{\frac{9}{2}}, \qquad (27)$$

and now

$$R_{i}(t) \approx \frac{(-t)^{\frac{1}{2}} - iq_{i}}{(-t)^{\frac{1}{2}} + iq_{i}}$$

The saddle point approximation to (26) is

$$I_{jM} \approx -i F \frac{e^{-ikd}}{d} \sqrt{\frac{\theta}{\sin \theta}} (1 - z\alpha^2)(1 + \frac{x}{2j\alpha}) (1 + R_e)^2 R_e^{j-M} R_m^{M-1}, \quad (28)$$

where

$$\alpha = (-t_0)^{\frac{1}{2}} = \frac{4j \ y - x^2}{4j \ x} \quad .$$
 (29)

It can be shown (Wait, 1961) that, for
$$\cos \tau_{j} < <1$$
,
 $(-t_{0})^{\frac{1}{2}} \approx v \cos \tau_{0}$.

$$\begin{split} \Omega(t_0) &\approx k(D_j - d) , \\ (1 + \frac{x}{2j\alpha})^{\frac{1}{2}} &\approx B_j , \\ (1 - z\alpha^2) &\approx \sin^2 \tau_j , \end{split}$$

and

$$\mathrm{d}\, rac{\sin\,\, heta}{ heta} \, pprox \mathrm{D}_{\, extsf{j}}$$
 ,

so (19) and (28), and hence (16), are approximately equal for the conditions $(-t_0) > > 1$ and cos $\tau_1 < < 1$. This small region is large enough to overlap (16) and (19).

3.3.3 Numerical Integration.

When τ_j approaches $\pi/2$, (16) must be integrated numerically. We use the Wronskian (Wait, 1962)

$$W_{1}'(t) W_{2}(t) - W_{2}'(t) W_{1}(t) = 2i$$

and (17) to derive

$$(1 + R_e)^{2} = \frac{-4}{W_{2}^{2}(t) (W_{1}(t) - q_e W_{1}(t))^{2}}, \qquad (30)$$

and hence

$$I_{jM} = G \int_{\Gamma} (4)(-1)^{j}(1+zt) e^{-ixt} \left(\frac{W_{1}(t-y)}{W_{2}(t-y)} \right)^{j} \frac{(E_{2}(t,q_{e}))^{j-M}}{(E_{1}(t,q_{e}))^{j-M+2}} \left(\frac{E_{2}(t,q_{m})}{E_{1}(t,q_{m})} \right)^{M-1} dt ,$$
(31)

where

$$E_{k}(t, q_{i}) = W_{k}'(t) - q_{i} W_{k}(t) . \qquad (32)$$

3.3.4 Residue Series.

The integrand in (31) has poles of order j-M+2 wherever

$$E_1(t, q_e) = 0$$
,

and poles of order M-1 wherever

$$E_1(t, q_m) = 0$$
.

Zeroes for both functions exist inside the contour Γ ; they are the wellknown solutions used for calculation of ground wave propagation over a spherical earth or diffraction by a finitely conducting sphere (Wait, 1962; Fock, 1965). The zeroes of $W_2(t-y)$ are all in the upper half plane outside the contour Γ . Thus, I_{jM} can be evaluated by summing a residue series:

$$I_{jM} = 2\pi i G \sum_{s} \operatorname{Res}_{jM}(t_s) .$$
(33)

We will first discuss methods for calculating residues of high order poles; then return to the problem of finding the pole locations t_s .

Assume that we have an integral

$$I = \oint \frac{A(t)}{B(t)} dt , \qquad (34)$$

where A(t) is analytic on and inside the contour and B(t) has a zero of order N at $t = t_0$ inside the contour. Expand A(t), B(t), and their ratio in Laurent series around t_0 and equate coefficients of like powers to obtain (see for example Kaplan (1952), pp. 564-565)

$b_0 \hat{a}_0$				= a.	D	
$b_1 \hat{a}_0 + b_0$	o â1			= a :	L	
$b_2 \hat{a}_0 + b_2$	$\hat{a}_1 + b_c$	âa		= a;	9	
•		•		•	,	(35)
•	•			•		

$$b_{N-1} \hat{a}_0 + b_{N-2} \hat{a}_1 + \dots + b_0 \hat{a}_{N-1} = a_{N-1}$$

where

$$a_{i} = \frac{\frac{d^{1}}{dt^{1}} (A(t))}{i!} \left|_{t=t_{0}}, \qquad (36)$$

 and

$$\mathbf{b}_{i} = \frac{\frac{\mathrm{d}^{i+N}}{\mathrm{d}t^{i+N}} (\mathbf{B}(t))}{(i+N) !} \mathbf{t}_{t=t_{0}}$$

are the coefficients of the Laurent series for A(t) and B(t) respectively, and the \hat{a} are the coefficients of the series for A/B. By definition

Residue
$$(t_0) = \hat{a}_{N-1}$$
 (37)

The set of equations (35) can be solved recursively:

$$\hat{a}_{0} = a_{0}/b_{0}; \text{ and } \hat{a}_{i} = (a_{i} - \sum_{\ell=0}^{i=0} b_{i-\ell} \hat{a}_{\ell})/b_{0}.$$
 (38)

Comparing (34) and (31), we see that if

$$E_1(t, q_e) = 0 ("q_e \text{ poles"}),$$

$$A(t) = 4(-1)^{j} (1 + zt) e^{-ixt} \left(\frac{W_{1}(t-y)}{W_{2}(t-y)} \right)^{j} \frac{E_{2}^{j-M}(t, q_{e}) E_{2}^{M-1}(t, q_{m})}{E_{1}^{M-1}(t, q_{m})}, (39)$$

 and

$$B(t) = (E_1(t, q_e))^{j-M+2}$$
.

If $E_1(t, q_m) = 0$, ("q_m poles"), then N = M-1 (there are no q_m poles for M = 1),

$$A(t) = 4(-1)^{j}(1+zt) e^{-ixt} \left(\frac{W_{1}(t-y)}{W_{2}(t-y)}\right)^{j} \frac{E_{2}^{j-M}(t,q_{e}) E_{2}^{M-1}(t,q_{m})}{E_{1}^{j-M+2}(t,q_{e})}, \quad (40)$$

and

$$B(t) = (E_1(t, q_m))^{M-1}$$
.

Taking high order derivatives of products of several functions (such as A(t)) analytically is very tedious, but such derivatives can easily be evaluated numerically on a computer by repeated application of Liebnitz's rule:

$$(gh)^{(k)} = \sum_{m=0}^{k} \frac{k!}{m! (k-m)} g^{(m)} h^{(k-m)},$$
 (41)

where g and h are functions of t and

$$g^{(m)} = \frac{d^m}{dt^m} g$$

In order to apply (41) to (39) and (40), we must be able to compute all derivatives of $(E_1(t,q))^{-1}$. In (41), let $h = g^{-1}$ so that gh = 1, and $(gh)^{(k)} = 0$, if $k \ge 0$. Then (41) becomes

$$0 = g^{(0)} h^{(k)} + \sum_{m=1}^{k} \frac{k!}{m! (k-m)!} g^{(m)} h^{(k-m)}$$

Notice that $g^{(0)} = g = 1/h$. Solve for $h^{(k)}$:

$$h^{(k)} = (g^{-1})^{(k)} = -h \sum_{m=1}^{k} \frac{k!}{m! (k-m)!} g^{(m)} h^{(k-m)}, \quad (42)$$

which is a recursive formula for derivatives of g^{-1} in terms of derivatives of g.

Similarly, recursive formulas for the b_i for a pole of order N are:

$$b_{o} = (E_{1}^{(1)}(t_{o}, q_{p}))^{N}$$
,

where p = e or m, as appropriate, and

$$b_{i} = (E_{1}^{(1)}(t_{0}, q_{p}))^{-1} \sum_{k=1}^{1} \frac{k(N+1) - i}{i(k+1)!} b_{i-k} E_{1}^{(k+1)}(t_{0}, q_{p}) .$$
(43)

Finally, all derivatives of the functions involved in (39) and (40) can be found recursively. Assume that $W_k(t)$ and $W'_k(t)$ are given. Then the differential equation for $W_k \left[W_k^{(2)}(t) = t W_k(t) \right]$ and straightforward mathematical induction show that

$$W_{k}^{(n)}(t) = t W_{k}^{(n-2)} + (n-2) W_{k}^{(n-3)}(t) , \text{ for } n \ge 2.$$
 (44)

Using (32),

$$E_{k}^{(n)}(t,q) = W_{k}^{(n+1)}(t) - qW_{k}^{(n)}(t) . \qquad (45)$$

Of course,

$$(e^{-ixt})^{(n)} = (-ix)^{n} e^{-ixt}$$
 (46)

We now return to the problem of finding the location of the poles, that is, the zeroes of $E_1(t,q)$. We use Newton's iteration:

$$t \approx \hat{t} - \frac{E_{1}(\hat{t}, q)}{E_{1}'(\hat{t}, q)} = \hat{t} - \frac{W_{1}'(\hat{t}) - q W_{1}(\hat{t})}{\hat{t} W_{1}(\hat{t}) - q W_{1}'(\hat{t})} , \qquad (47)$$

where \hat{t} is an approximation to t. For first approximations, we use the known zeroes of $W'_1(t)$, if q is small, and the zeroes of $W_1(t)$ if q is large. The first ten such zeroes are listed in Subroutine TW, which also contains approximate formulas for all the other zeroes.

3.4 Ionospheric Reflection Coefficients

The ionospheric reflection coefficients, T, are functions of the angle of incidence, φ , which depends on distance and the hop number. When the geometrical-optics formula (19) is used, φ is computed with (22). When (28) or (31) is used, φ is given by (29), $\cos \tau_{\rm j} = (-t_0)^{1/2}/v$, and $\sin \varphi = a_1/a_2 \sin \tau_{\rm j}$. When $I_{\rm jM}$ is evaluated with the residue series (33), we use these same formulas except now t_0 is the first q_e pole, and hence is complex. Continuation of the ionospheric reflection coefficients into the complex φ -plane is accomplished by approximating the input values along the real axis with analytic functions and continuing these functions analytically.

Following Wait (1962), we approximate $\rm T_{ee}$ and $\rm T_{mm}$ by an exponential

$$T \approx - \exp(A \cos \varphi)$$
, (48)

where A is a complex number determined from the input data:

Real (A) = log (
$$|T|$$
)/cos φ , (49)
Imag (A) = (Phase (T) - π)/cos φ .

The polarization coupling coefficients T_{em} and T_{me} are approximated by fitting their amplitude and phase with linear functions.

4. NOTES ON COMPUTER IMPLEMENTATION

4.1 Program Organization and Flow

Figure 2 shows the large-block program organization and flow. The numbers in the blocks are the statement numbers where the block function begins. Details of program organization and flow are best determined from the statements and comments in the program listing in section 4.4.

4.1.1 Numerical Integration Branch.

We use 48-point Gaussian quadrature to integrate (31) on a finite portion of the contour Γ . First, for $t \ge 1$,

$$W_{k}(t) \approx t^{-\frac{1}{4}} \exp(\frac{2}{3} t^{\frac{3}{2}})$$
, (50)

and

 $W\,{}_{\rm k}^{\,\prime}(t)\,\approx t^{1\over 2}\,\,W_{\,\rm k}(t)$,

so the magnitude of the integrand in (31) is about $4t^{\frac{1}{2}} \exp(-\frac{4}{3}t^{\frac{3}{2}})$. We consider the contribution beyond t = 4 to be negligible, so the first portion of the contour of integration runs from 4 to 0 along the real axis. The second portion of the contour is a straight line from 0 to K (-4-i), where K is chosen so that the real part of -ixt is -9 for the shortest distance for which numerical integration would be used. Specifically, $K = -9/(2\sqrt{4+y} - 4)$. The slope of this contour was chosen empirically to be optimum for convergence of the integrand. The rest of the infinite contour Γ contributes little to the integral, so we ignore it.

4.1.2 Residue Series and the Subroutine LPAINR.

The residues are calculated in the subroutine LPAINR. Since only the factor e^{-ixt} in A(t) (see (39) and (40)) depends on distance, all necessary derivatives of A(t)/ e^{-ixt} are computed and stored on the

first entry to LPAINR. The b_1 (43) are also independent of distance and are computed and stored on this first entry. Then, on every entry, e^{-ixt} and its derivatives are computed and the derivatives of the product $e^{-ixt} (A(t)/e^{-ixt}) = A(t)$ are computed using (41). The residues are then computed with (38).

The storage in LPAINR is set up for at most 5 hops since the sixth hop would not normally use LPAINR except for paths longer than 10,000 km. Because quantities (such as the b_i) need to be stored only for $M \leq j$ (and for M > l for the q_m poles), we save some storage by overlaying the arrays for the q_m poles on those for the q_e poles. If necessary, the details can be determined by examining the FORTRAN listing.

4.2 Input Data and a Test Case

Table 1 lists the input data necessary for each case, and figure 3 shows the arrangement of an input data deck. You can stack as many cases in sequence as you want. Execution terminates when an end-of-file card is read by statement 10.

Input data for a test case are listed in figure 4. The reflection coefficients used in this test case were computed with the program ANIREF, which is described in the appendix.

The printout produced by the test case is listed in figures 5-13. The "PHI C" printed out is the "phase lag" related to the phase of the field by

 $\varphi_c = -[\text{phase (E)} + \text{kd} + \pi/2],$

where phase (E) is the phase of the total field or any of its components, as appropriate.

4.3 Important Compiler Characteristics

In our FORTRAN system, the variable index of a DO loop is compared with the maximum value before the DO loop is executed, and if the index exceeds the maximum value, the loop is skipped. This corresponds with the usual mathematical convention that a sum or product is empty if the lower limit of the index exceeds the upper limit, and we have found it convenient to use this feature in the program and its subroutines. If your compiler tests the index of the DO loop <u>after</u> execution, you will need to modify the program accordingly.

Our computer stores two-dimensional arrays columnwise. That is, if A(i,j) is a two-dimensional array, all of the elements of the column j=l are stored in sequence, followed by all the elements of the column j=2, etc. A three-dimensional array can be thought of as an ordered sequence of two-dimensional arrays, with the third subscript being the number of the two-dimensional array. Therefore, a three-dimensional array can be used in place of a two-dimensional array by fixing the value of the third subscript. Similarly, a two-dimensional array can be treated as a one-dimensional array by fixing the value of the second subscript. We have used this feature extensively in subroutine LPAINR.

4.4 FORTRAN Listing of PROGRAM ANIHOP and Its Subroutines

See FORTRAN listing of ANIHOP beginning on page 33.

5. ACKNOWLEDGMENTS

Revision of the propagation program was sponsored by the Defense Atomic Support Agency and monitored by Mr. Dow Evelyn. Mrs. Mary Chrisman wrote the early versions of the program and several of its subroutines. Dr. George Hufford originated the AIRY function subroutine. The reflection coefficient program in the appendix incorporates many improvements developed by Dr. Bernard Wieder.

We would especially like to thank Mr. David Morfitt of NWC, Corona; Dr. Gary Price of SRI; Mr. Burt Gambill of GE Tempo; and Dr. G. Gonzales of University of Miami for many suggestions and discussions of the earlier version of the program.

Variable	Physical Quantity	Units	Comments
CNDK		mho/m	Ground conductivity of path.
EPS2			Ground dielectric constant relative to free space.
DMIN	Distance	km	Minimum distance at which field is calculated.
DELTA	Distance	km	Distance increment.
DMAX	Distance	km	Largest distance for which NHOP hops will be used.
NHOP	Number of hops		See preceding comment.
NT	Number		Reflection coeffi cients are read in for this many angles of incidence.
POWER	Radiated power	watts	CCIR definition.
KASE			Controls punching of output cards; 1 means punch cards; 0 means no cards output.
ICOND	Number		Number of distance blocks to follow. May be 0.
XD(I)	Distance	km 💧 🖌	NH(I) hops will be calculated for XD(I-1) to
NH (I)	Number of hops)	XD(I), where $NH(0) = NHOP$, and $XD(0) = DMAX$.
ID(I), ITIM, IPHI, PHIA	Various (see comm	ents)	Identification of ionospheric reflection coefficients; such as time, magnetic field, azimuth, etc.
FREQ	Radio frequency	kHz	

Table 1. Input Data for the Program ANIHOP

Variable	Physical Quantity	Units	Comments
PHI(N)		Degrees	Angle of incidence on ionosphere
TAMP(L,N)	Т)	(Ionospheric reflection coefficient for PHI(N):
TPHA(L,N)	Phase of T	radians	$\begin{cases} L = 1 \text{ for } T, L = 2 \text{ for } T, L = 3 \text{ for } T, \\ L = 4 \text{ for } T, \\ mm. \end{cases}$
HBOT	Height	km	The input phase(T) is referenced to this height.
HREF	Height	km	Effective height of reflectionphase(T) will re-referenced to this height in program.

Table 1. Input Data for the Program ANIHOP (continued)

Figure 3. Data deck set-up for program Anihop. The top line on the dummy card is a descriptive label; it should not be punched on the card.

ANIHOP INPUT 6000°5 200. 1000. 2 6 1000.0 3 8000. 10000. 9 600 PHIA= 213.5 DIP= 6.5 HM= 0.310 GAUSS dentification SAN FRAN SEAPATH NIGHT 30.065.02.386-001 1.9271.830-001-1.0187.001-002 1.5413.332-001-1.049 74.0 76.3 30.073.01.627-001 2.8252.093-001 0.9357.233-002-1.8514.838-001 0.565 74.0 74.9 30.078.01.527-001 2.5762.187-001 1.8929.881-002-0.7885.981-001 1.402 74.0 76.2 30.080.02.031-001 2.4752.135-001 2.2311.028-001-0.4436.503-001 1.713 74.0 77.1 30.081.02.410-001 2.4752.081-001 2.3921.027-001-0.2816.781-001 1.865 74.0 77.4 30.082.02.866-001 2.5042.005-001 2.5481.010-001-0.1257.073-001 2.014 74.0 77.6 4. 80. 600. 200. 1000. 2 6 1000. 0 3 6000. 5 8000. 7 10000. 9 PHIA= 258.1 DIP= 39.0 HM= 0.370 GAUSS SAN FRAN SEAPATH NIGHT 30.065.03.816-001 1.1412.662-001-1.1152.343-001-0.8282.081-001 0.630 74.0 77.8 30.073.02.596-001 2.6713.786-001 0.7353.404-001 0.7832.047-001 1.153 74.0 75.3 30.078.01.394-001 2.9984.035-001 1.6713.596-001 1.6513.211-001 1.513 74.0 74.6 30.080.01.270-001 2.6723.977-001 2.0173.533-001 1.9793.909-001 1.730 74.0 76.2 30.081.01.464-001 2.4953.902-001 2.1853.462-001 2.1404.303-001 1.849 74.0 77.3 30.082.01.827-001 2.4003.791-001 2.3513.360-001 2.2994.729-001 1.974 74.0 78.2 4. 80. 600. 200. 1000. 2 6 1000. 0 3 6000. 5 8000. 7 10000. 9 SAN FRAN SEAPATH NIGHT PHIA= 299.2 DIP= 66.9 HM= 0.510 GAUSS 30.065.03.090-001 0.4292.224-001-1.1422.389-001-1.4034.374-001 1.632 74.0 79.1 30.073.03.213-001 1.4283.384-001 0.7743.682-001 0.7523.215-001-2.103 74.0 78.7 30.078.03.986-001 1.8263.487-001 1.7753.877-001 1.8133.480-001-0.338 74.0 79.0 30.080.04.569-001 1.9983.357-001 2.1563.755-001 2.2094.015-001 0.321 74.0 79.2 30.081.04.922-001 2.0913.247-001 2.3453.642-001 2.4044.371-001 0.633 74.0 79.3 30.082.05.316-001 2.1893.103-001 2.5323.489-001 2.5974.782-001 0.933 74.0 79.4 END OF FILF

Dhase ango Liha So

Figure 4. List of input data deck for ANIHOP sample case.

WAVE HOP CALCULATION OF VERTICAL ELECTRIC FIELD STRENGTH (V/M) FOR 1900 WATTS RADIATED POWER

FREQUENCY = 30.00KHZ, EARTH CONDUCTIVITY = 4.0000 MHO/M, RELATIVE PERMITIVITY = 80.00

IONOSPHERIC MODEL

SAN FRAN	SEAPAIR	A NIGHT	PHIA=	213.5 UIF	- 0.5 MM	I= 0.310 GA	1055	REFEREN	CE HEIGHI	- 1	1.000				
PHI	COS(PH)					Т Амріттия			M M F PHASE		HBOT	۲	IREF		
65.00	0-4226	0.23860	3.840	0.18300	0.895	0.07001	-2.829	0.33320	0.864		74.0		76.3		
73.00	0.2924	0.16270	4.149	0.20930	2,259	0.07233	-0.527	0.48380	1.889		74.0		74.9		
78.00	0.2079	0.15270	3.517	0.21870	2.833	0.09881	0.153	0.59810	2.343		74.0		76.2		
80.00	0.1736	0.20310	3.261	0.21350	3.017	0.10280	0.343	0.65030	2.499		74.0		77.1		
81.00	0.1564	0.24100	3,183	0.20810	3,100	0.10270	0.427	0.67810	2.573		74.0		77.4		
82.00	0.1392	0.28660	3.134	0.20050	3.178	0.10100	0.505	0.70730	2.644		74.0		77.6		
DISTANCE		TOTAL	GR WAVE	H0P 1	H0P 2	H0P 3	HOP 4	HOP 5	HOP 6	HOP	7	HOP	8	HOP	Э
600	ΔΜΡ	2.75-004	3.44-004	1.58-004	8.31-005										
000	PHTC	-0.36	0.44 004	-1.93	-1.61										
	1111 0	0.00	0.40	1000	7001										
800	ΔΜΡ	1,99-004	2.08-004	1.30-004	3.06-005										
000	PHT C	1.00	1.59	2.58	-0.28										
	THE Q	1.0)	4.75	2.00	0020										
1000	ΔΜΡ	2.40-0.04	1.32-004	1,27-004	1.18-005										
2000	PHT C	1.08	0.78	1.48	-0.75										
	1111 0	*****	0010	1040	0015										
1200	ΔΜΡ	2.07-004	8.50-005	1.28-004	5,27-006	6.56-006	5.85-006	6.72-139							
1200	PHT C	1.02	0.98	0.93	3,09	2.42	-3.00	~0.03							
	THE O	1.00	0.00	0.00	0.05		0.00	0.00							
1400	AMP	1.88-004	5.57-005	1.24-004	1.17-005	3.45-006	2,96-006	3.35-006							
2.00	PHT C	0.84	1.19	A.62	1.40	0.66	2.87	0.83							
	1111 0	0004	1.1)	0.02	7040 ·	0000	2001	0000							
1600	ΔΜΡ	1.45-004	3.68-005	1.13-004	1.48-005	2,51-006	1,93-006	1.32-006							
1000		0 67	1 70	n // 9	-0.60	0 4 1	-1 21	-1 25							
	FUT C	0.97	1.02	0.40	-0.00	0.41		1.62.9							
1800	ΔΜΡ	9.50-005	2.45-005	9.88-005	1-68-005	3-63-006	1.49-006	8-53-007							
	PHT C	0.60	1.59	n.44	-2.04	2.17	3.01	-0.91							
	THE O	0100	1.000	0044	2007		0001	0052							
2000	AMP	7.35-005	1.65-005	8.35-005	1.86-005	4.36-006	1.40-006	6.60-007							
	PHT C	0.76	1.80	0.47	-3.06	-0.98	2.55	1.48							
		0010	1000	0041	0000	00,00	2000	1010							
2200	ΔΜΡ	7,12-005	1.11-005	7.06-005	1,95-005	4.56-006	1.47-006	5-94-007							
2200	PHT C	1.16	2.00	0.70	2.49	-2.88	-2.82	-0.71							
		1.10	2.00	0.110	2045	2400	2002	U U I I							
2400	AMP	7.66-005	7.51-006	5.76-005	1.97-005	4.52-006	1.51-006	5.86-007							
E 400	PHT C	1.20	2.21	0.87	1.95	1.33	-0-55	-1.47							
	1111 0			0.07	T 0 22		00)	~ 9~7 1							
2600	AMP	6.54-0.05	5.11-006	4,56-005	1.94-005	4.37-006	1.45-006	5.97-007							
2000	PHTC	1.18	2.41	1.01	1.53	-0.30	2.42	-1.08							
	CHT O	T 0 T 0	C • 7 L	1.01	T • 23	0.00	L 0 7 C	1.00							

Figure 5. Printed output from ANIHOP sample case, page 1.

2800	AMP Phi	с	5.27-005 1.18	3.48-006 2.62	3.57-005 1.16	1.90-005 1.21	4.21-006 -1.52	1.39-006 0.42	5.96-007 0.35		
3000	AMP Phi	С	4.09-005 1.31	2.38-006 2.82	2.76-005 1.32	1.86-005 0.97	4.05-006 -2.48	1.30-006 -2.06	5.72-007 2.64		
3200	AMP Phi	с	3.65-005 1.34	1.63-006 3.03	2.11-005 1.49	1.82-005 0.81	3.95-006 3.03	1.22-006 2.12	5.54-007 -0.82		
3400	AM P Phi	с	3.19-005 1.31	1.12-006 -3.05	1.60-005 1.67	1.76-005 0.72	3.89-006 2.41	1.18-006 0.33	5.50-007 2.45		
3600	AMP Phi	С	2.65-005 1.25	7.70-007 -2.85	1.21-005 1.85	1.68-005 0.69	3.92-006 1.91	1.11-006 -1.16	5.71-007 0.78		
3800	AMP Phi	С	2.18-005 1.26	5.30-007 -2.64	9.08-006 2.04	1.55-005 0.70	4•10-006 1•50	1.03-006 -2.41	5.89-007 -1.60		
4000	AMP Phi	с	2.07-005 1.28	3.66-007 -2.44	6.78-006 2.23	1.43-005 0.77	4.40-006 1.19	9•78-007 2•80	6.12-007 2.63		
4200	AMP Phi	С	2.06-005 1.25	2.53-007 -2.23	5.04-006 2.42	1.34-005 0.98	4.77-006 0.95	9.44-007 1.90	6.37-007 0.85		
4400	AMP Phi	с	1.82-005 1.27	1.75-007 -2.03	3.73-006 2.61	1.23-005 1.22	5•13-006 0•80	9.31-007 1.14	6.57-007 -0.70		
4600	AMP Phi	С	1.54-005 1.36	1.21-007 -1.82	2.76-006 2.81	1.10-005 1.47	5.42-006 0.70	9.34-007 0.53	6.64-007 -2.02		
4800	AMP Phi	с	1.30-005 1.39	8.42-008 -1.62	2.03-006 3.00	9.18-006 1.61	5.59-006 0.66	9.36-007 0.05	6.73-007 3.12		
5000	AMP Phi	С	1.12-005 1.39	5.84-008 -1.41	1.49-006 -3.08	7.59-006 1.77	5.63-006 0.65	9.27-007 -0.31	6.86-007 2.12		
5200	AMP Phi	с	9.32-006 1.35	4.06-008 -1.21	1.10-006 -2.88	6.20-006 1.93	5.52 - 006 0.68	9.44-007 -0.58	7.01-007 1.25		
5400	AMP PHI	с	7.42-006 1.29	2.83-008 -1.00	8.02-007 -2.69	5.02-006 2.10	5.28-006 0.73	1.01-006 -0.74	7.17-007 0.50		
5600	AMP Phi	с	5.66-006 1.23	1.97-008 -0.80	5.86-007 -2.49	4.02-006 2.28	4.95-006 0.80	1.12-006 -0.79	7.33-007 -0.14		
5800	AMP Phi	С	4.19-006 1.18	1.37-008 -0.59	4.28-007 -2.29	3.20-006 2.46	4.53-006 0.89	1.27-006 -0.75	7.55-007 -0.69		
6000	AMP Phi	с	3.16-006 1.13	9.57-009 -0.39	3.12-007 -2.09	2.53-006 2.64	4.16-006 1.01	1.45-006 -0.65	7.80-007 -1.15		
6200	AMP Phi	с	2.90-006 1.10	6.68-009 -0.18	2.27-007 -1.89	1.98-006 2.82	3.92-006 1.20	1.63-006 -0.52	7.98-007 -1.53	3.70-007 0.74	1.85-007 -0.78
6400	AMP Phi	С	2.18-006 1.22	4.67-009 0.02	1.65-007 -1.69	1.55-006 3.01	3.64-006 1.42	1.79-006 -0.37	8.11-007 -1.83	3.78-007 -0.02	1.88-007 -2.08

Figure 6. Printed output from ANIHOP sample case, page 2.

6600 AMP 1.80-006 3.26-009 1.20-007 1.20-006 3.33-006 1.92-006 8.28-007 3.87-007 1.91-007 PHI C 1.51 0.22 -1.49 -3.09 1.66 -0.20 -2.09 -0.69 3.03 6800 AMP 1.64-006 2.28-009 8.74-008 9.31-007 3.00-006 2.00-006 8.61-007 3.96-007 1.95-007 PHI C 1.82 0.43 -1.28 -2.90 1.91 -0.04 -2.28 -1.28 1.96 7000 AMP 1.40-006 1.60-009 6.34-008 7.17-007 2.58-006 2.02-006 9.08-007 4.07-007 1.99-007 PHI C 2.01 0.63 -1.08 -2.71 2.11 0.13 -2.39 -1.80 0.99 7200 AMP 1.16-006 1.12-009 4.60-008 5.50-007 2.17-006 1.99-006 9.55-007 4.23-007 2.04-007 PHI C 2.22 0.84 -0.88 -2.51 2.29 0.30 -2.41 -2.24 0.12 7400 AMP 1.07-006 7.84-010 3.33-008 4.21-007 1.81-006 1.91-006 9.87-007 4.41-007 2.08-007 PHI C 2.52 1.04 -0.68 -2.32 2.46 0.46 -2.36 -2.61 -0.66 7600 AMP 1.10-006 5.50-010 2.42-008 3.21-007 1.50-006 1.79-006 9.99-007 4.58-007 2.13-007 PHI C 2.77 1.25 -0.48 -2.13 2.64 0.63 -2.23 -2.91 -1.36 1.14-006 3.86-010 1.75-008 2.44-007 1.23-006 1.65-006 9.89-007 4.72-007 2.20-007 7800 AMP PHI C 2.90 1.45 -0.27 -1.93 2.82 0.80 -2.05 3.13 -1.99 8000 AMP 1.10-006 2.71-010 1.27-008 1.85-007 1.00-006 1.52-006 9.66-007 4.90-007 2.27-007 PHI C 2.90 1.66 -0.07 -1.73 3.00 0.98 -1.83 2.92 -2.54 8200 AMP 9.70-007 1.90-010 9.17-009 1.40-007 8.10-007 1.41-006 9.35-007 5.17-007 2.33-007 1.18-007 5.91-008 -3.03 PHI C 2.86 1.86 0.13 ~1.54 -3.10 1.20 -1.57 2.76 -0.48 -2.21 8400 AMP 1.02-006 1.34-010 6.63-009 1.06-007 6.52-007 1.30-006 9.04-007 5.56-007 2.41-007 1.22-007 6.10-008 PHI C 2.73 2.07 0.33 -1.34 -2.92 1.44 -1.29 2.82 2.66 -1.27 2.88 8600 AMP 1.06-006 9.39-011 4.80-009 7.99-008 5.23-007 1.18-006 8.73-007 6.02-007 2.50-007 1.25-007 6.29-008 PHI C 2,58 2.27 0.54 -1.14 -2.73 1.69 -1.01 2.62 2.45 -1.99 1.77 8800 AMP 1.07-006 6.61-011 3.47-009 6.01-008 4.17-007 1.07-006 8.42-007 6.44-007 2.62-007 1.29-007 6.49-008 PHI C 2.49 2.48 0.74 -0.94 -2.54 1.95 -0.72 2.66 2.14 -2.65 0.75 9000 AMP 1.06-006 4.65-011 2.51-009 4.52-008 3.31-007 9.56-007 8.10-007 6.74-007 2.72-007 1.33-007 6.70-008 PHI C 2.47 2.68 0.94 -0.75 -2.35 2.22 ~0.45 2.75 1.90 3.04 -0.20 9200 AMP 1.00-006 3.27-011 1.81-009 3.39-008 2.62-007 8.40-007 7.72-007 6.86-007 2.80-007 1.38-007 6.92-008 PHI C 2.49 2.89 1.14 -0.55 -2.16 2.48 -0.19 2.89 1.70 2.51 -1.07 9400 AMP 9.18-007 2.31-011 1.31-009 2.54-008 2.07-007 7.15-007 7.28-007 6.78-007 2.89-007 1.43-007 7.13-008 PHI C 2.47 3.09 1.35 -0.35 -1.97 2.67 0.07 3.07 1.53 2.04 -1.88 9600 AMP 8.11-007 1.63-011 9.46-010 1.90-008 1.62-007 6.03-007 6.79-007 6.52-007 3.03-007 1.48-007 7.37-008 PHI C 2.43 -2.99 1.55 -0.15 1.39 -1.78 2.87 0.31 -3.01 1.63 -2.62 9800 AMP 6.76-007 1.15-011 6.84-010 1.42-008 1.27-007 5.06-007 6.24-007 6.14-007 3.26-007 1.53-007 7.64-008 PHI C 2.34 -2.78 1.75 0.05 -1.58 3.06 0.54 -2.77 1.31 1.26 2.99 10000 AMP 5.40-007 8.09-012 4.94-010 1.06-008 9.92-008 4.21-007 5.76-007 5.67-007 3.54-007 1.59-007 7.90-008 PHI C 2.16 -2.58 1.96 0.25 -1.39 -3.03 0.77 -2.51 1.29 0.93 2.38

•

Figure 7. Printed output from ANIHOP sample case, page 3.

WAVE HOP CALCULATION OF VERTICAL ELECTRIC FIELD STRENGTH (V/M) FOR 1000 WATTS RADIATED POWER

FREQUENCY = 30.00KHZ, EARTH CONDUCTIVITY = 4.00000 MHO/M, RELATIVE PERMITIVITY = 80.00

IONOSPHERIC MODEL

27

SAN FRAN SEAPATH NIGHT PHIA= 258.1 DIP= 39.0 HM= 0.370 GAUSS REFERENCE HEIGHT = 78.200 PHI COS(PHI) ΤΕΕ TEM TME тмм HEOT HREF AMPLITUDE PHASE AMPLITUDE PHASE AMPLITUDE PHASE AMPLITUDE PHASE 65.00 0.4226 0.38160 3.373 0.26620 1.117 0.23430 1.404 0.20810 2.862 74.0 77.8 73.00 0.2924 0.25960 4.215 0.37860 2.279 0.34040 2.327 0.20470 2.697 74.0 75.3 78.00 0.2079 0.13940 4.096 0.40350 0.35960 0.32110 2.769 2.749 2.611 74.0 74.6 80.00 0.1736 0.12700 3.589 0.39770 2.934 0.35330 2.896 0.39090 2.647 74.0 76.2 81.00 0.1564 3.321 0.14640 0.39020 3.011 0.34620 2.966 0.43030 2.675 74.0 77.3 82.00 0:1392 0.18270 3.135 0.37910 3.086 0.33600 3.034 0.47290 2.709 74.0 78.2 DISTANCE TOTAL GR WAVE HOP 1 HOP 2 HOP 3 HOP 4 HOP 5 HOP 6 HOP 9 HOP 7 HOP 8 600 AMP 4.15-004 3.44-004 2.17-004 2.19-004 PHI C 0.16 0.40 -1.96 0.64 800 AMP 3.33-004 2.08-004 1.27-004 1.00-004 PHI C 1.26 0.59 1.51 2.22 1000 AMP 3.20-004 1.32-004 9.49-005 9.82-005 PHI C 0.91 0.78 1.16 0.85 1200 AMP 1.72-004 8.50-005 8.04-005 8.95-005 3.01-005 3.30-005 2.66-139 PHI C 1,29 0.98 0.72 2.71 -1.15 1.31 -1.89 1400 AMP 2.06-004 5.57-005 7.55-005 7.79-005 2.97-005 1.21-005 3.30-005 PHI C 0.55 1.19 0.52 0.14 -2.45 0.34 0.74 1600 AMP 2.84-005 3.68-005 6.86-005 7.04-005 3.13-005 8.33-006 7.93-006 PHI C -1.19 -1.76 1.39 0.43 -2.13 2.81 -2.64 1800 AMP 1.01-004 2.45-005 5.99-005 6.47-005 2.47-005 7.97-006 4.07-006 1.59 PHI C 1.35 0.42 2.56 0.36 1.27 -2.39 2000 AMP 1.06-004 1.65-005 5.08-005 5.78-005 2.03-005 8.77-006 3.34-006 PHI C 1.23 1.80 0.46 1.44 -2.87 1.33 0.37 2200 AMP 1.08-004 1.11-005 3.97-005 5.29-005 1.83-005 1.00-005 3.40-006 PHI C 0.96 2.00 0.78 0.61 1.42 2.59 -1.36 2400 AMP 7.70-005 7.51-006 3.13-005 4.98-005 1.76-005 7.36-006 3.76-006 PHI C 0.13 2.21 1.01 0.01 -0.75 -1.29 -1.75 2600 AMP 3.84-005 5.11-006 2.48-005 4.74-005 1.71-005 6.12-006 4.23-006 PHI C -0.02 2.41 1.14 -0.39 -2.44 1.72 -1.07 2800 AMP 3.55-005 3.48-006 1.94-005 4.51-005 1.54-005 5.50-006 4.31-006 PHI C 0.10 2.62 1.29 -0.63 2.52 -0.23 0.53

Figure 8. Printed output from ANIHOP sample case, page 4.

3000	AMP Phi	С	2.40-005 -0.02	2.38-006 2.82	1.50-005 1.45	4.24-005 -0.75	1.40-005 1.45	5.19-006 -2.77	3.41-006 2.92		
3200	AMP Phi	с	4.04-005 -0.11	1.63-006 3.03	1.15-005 1.63	3.90-005 -0.77	1.32-005 0.58	5.03-006 1.41	2.93-006 -0.45		
3400	AMP Phi	С	4.17-005 -0.44	1.12-006 -3.05	8.74-006 1.80	3.50-005 -0.73	1.28-005 -0.12	4.98-006 -0.38	2.64-006 2.90		
3600	AMP Phi	С	3.81-005 -0.64	7.70-007 -2.85	6.59-006 1.99	3.08-005 -0.64	1.27-005 -0.68	4.80-006 -1.87	2.50-006 1.23		
3800	AMP Phi	с	3.18-005 -0.80	5.30-007 -2.64	4.95-006 2.17	2.65-005 -0.51	1.28-005 -1.11	4.43-006 -3.11	2.39-006 -1.12		
4000	AMP Phi	С	2.14-005 -0.76	3.66-007 -2.44	3.69-006 2.36	2.23-005 -0.36	1.32-005 -1.43	4.18-006 2.09	2.32-006 3.11		
4200	AMP Phi	с	1.96-005 -0.57	2.53-007 -2.23	2.75-006 2.55	1.80-005 -0.22	1.39-005 -1.63	4.04-006 1.15	2.28-006 1.32		
4400	AMP Phi	с	2.12-005 -0.73	1.75-007 -2.03	2.04-006 2.75	1.42-005 -0.08	1.46-005 -1.73	3.97-006 0.34	2.26-006 -0.26		
4600	AMP PHI	С	2.02-005 -1.03	1.21-007 -1.82	1.50-006 2.94	1.10-005 0.07	1.51-005 -1.75	4.01-006 -0.36	2.05-006 -1.60		
4800	AMP Phi	С	1.77-005 -1.23	8.42-008 -1.62	1.11-006 3.14	8.59-006 0.28	1.51-005 -1.70	4.15-006 -0.95	1.89-006 -2.80		
5000	AMP Phi	с	1.53-005 -1.31	5.84-008 -1.41	8.14-007 -2.95	6.67-006 0.49	1.46-005 -1.61	4.30-006 -1.43	1.77-006 2.42		
5200	AMP Phi	С	1.38-005 -1.30	4.06-008 -1.21	5.97-007 -2.75	5.14-006 0.70	1.38-005 -1.48	4.45-006 -1.83	1.69-006 1.47		
5400	AMP Phi	с	1.29-005 -1.27	2.83-008 -1.00	4.37-007 -2.55	3.94-006 0.92	1.26-005	4.73-006 -2.17	1.64-006 0.62		
5600	AMP Phi	С	1.19-005 -1.29	1.97-008 -0.80	3.20-007 -2.36	3.00-006 1.14	1.13-005 -1.15	5.22-006 -2.44	1.63-006 -0.12		
5800	AMP Phi	С	1.05-005 -1.37	1.37-008 -0.59	2.34-007 -2.16	2.28-006 1.36	9.92-006 -0.97	5.91-006 -2.60	1.63-006 -0.78		
6000	AMP Phi	С	9.02-006 -1.52	9.57-009 -0.39	1.70-007 -1.96	1.72-006 1.58	8.54-006 -0.77	6.63-006 -2.68	1.65-006 -1.37		
6200	AMP Phi	с	6.88-006 -1.77	6.68-009 -0.18	1.24-007 -1.76	1.30-006 1.80	7.19-006 -0.56	7.24-006 -2.67	1.72-006 -1.88	6.04-007 1.78	3.12-007 1.70
6400	AMP Phi	С	6.23-006 -1.88	4.67-009 0.02	9.03-008 -1.56	9.74-007 2.02	5.95-006 -0.35	7.62-006 -2.60	1.81-006 -2.30	5.97-007 0.92	2.88-007 0.35

Figure 9. Printed output from ANIHOP sample case, page 8.

6600 AMP 6.39-006 3.26-009 6.56-008 7.30-007 4.86-006 7.74-006 1.88-006 5.93-007 2.70-007 PHI C -2.00 0.22 -1.35 2.24 -0.13 -2.49 -0.90 -2.65 0.13 6.57-006 2.28-009 4.77-008 5.46-007 3.91-006 7.61-006 1.96-006 5.99-007 2.55-007 6800 AMP PHI C -2.12 0.43 -1.15 2.46 0.10 -2.35 -2.96 -0.59 -2.05 7000 AMP 6.33-006 1.60-009 3.46-008 4.07-007 3.13-006 7.26-006 2.10-006 6.21-007 2.45-007 PHI C -2.20 0.63 -0.95 2.68 0.32 -2.19 3.03 -1.23 -3.11 7200 AMP 5.65-006 1.12-009 2.51-008 3.04-007 2.49-006 6.75-006 2.38-006 6.43-007 2.39-007 PHI C -2.25 0.84 -0.75 2.90 0.54 -2.01 2.80 -1.79 2.20 4.76-006 7.84-010 1.82-008 2.26-007 1.97-006 6.13-006 2.80-006 6.60-007 2.34-007 7400 AMP PHI C -2.29 1.04 -0.55 3.12 0.76 -1.82 2.66 -2.30 1.30 7600 AMP 3.92-006 5.50-010 1.32-008 1.68-007 1.54-006 5.46-006 3.27-006 6.89-007 2.34-007 -2.94 -2.76 PHI C -2.37 1.25 -0.35 0.98 -1.62 2.62 0.47 7800 AMP 3.34-006 3.86-010 9.55-009 1.25-007 1.21-006 4.79-006 3.71-006 7.48-007 2.38-007 PHI C -2.52 1.45 -0.14 -2.73 1.20 -1.42 2.65 3.12 -0.28 3.11-006 2.71-010 6.91-009 9.24-008 9.38-007 4.13-006 4.05-006 8.16-007 2.42-007 8000 AMP PHI C -2.70 1.66 0.06 -2.51 1.41 -1.21 2.74 2.81 8200 AMP 3.18-006 1.90-010 5.00-009 6.85-008 7.26-007 3.53-006 4.25-006 8.66-007 2.48-007 9.79-008 4.92-008 PHI C -2.90 1.86 0.26 -2.29 1.63 -0.99 2.86 2.54 2.56 -1.61 2.27 8400 AMP 3.10-006 1.34-010 3.62-009 5.07-008 5.60-007 2.96-006 4.32-006 9.04-007 2.63-007 9.65-008 4.62-008 PHIC -3.00 2.07 0.46 -2.07 1.85 -0.77 3.02 2.28 -2.20 1.64 1,00 8600 AMP 2.97-006 9.39-011 2.62-009 3.75-008 4.30-007 2.44-006 4.26-006 9.77-007 2.81-007 9.68-008 4.38-008 PHIC -3.03 -0.55 2,27 0.67 -1.85 2.07 -3.09 2.02 -2.70 0.79 -0,20 8800 AMP 2.75-006 6.61-011 1.89-009 2.77-008 3.30-007 1.99-006 4.08-006 1.14-006 2.89-007 9.67-008 4.21-008 PHI C -3.03 2.48 0.87 -1.63 2.29 ~0.32 -2.90 1.79 -3.14 0.01 -1.32 9000 AMP 2.44-006 4.65-011 1.37-009 2.05-008 2.52-007 1.60-006 3.83-006 1.39-006 2.98-007 9.81-008 4.06-008 PHI C -3.04 2.68 1.07 -1.41 2.50 -0.10 -2.70 1.66 2.71 -0.73 -2.37 9200 AMP 2.06-006 3.27-011 9.89-010 1.51-008 1.92-007 1.27-006 3.51-006 1.69-006 3.22-007 1.03-007 3.98-008 PHI C -3.12 2.89 1.28 -1.20 2.72 0.13 -2.50 1.63 2.30 -1.40 2,92 9400 AMP 1.70-006 2.31-011 7.15-010 1.11-008 1.46-007 1.01-006 3.17-006 1.99-006 3.65-007 1.07-007 3.96-008 PHI C 3.00 3.09 1.48 -**0.**98 2.94 0.35 -2.28 1.68 1.96 -2.01 2.00 9600 AMP 1.50-006 1.63-011 5.17-010 8.22-009 1.11-007 8.05-007 2.81-006 2.25-006 4.09-007 1.10-007 3.92-008 PHI C 2.77 1.68 -0.76 -3.13 0.58 -2.07 1.79 -2.99 1.72 -2.58 1.14 9800 AMP 1.47-006 1.15-011 3.73-010 6.06-009 8.40-008 6.36-007 2.46-006 2.45-006 4.37-007 1.16-007 3.96-008 PHI C 2.56 1.89 -0.54 -2.91 -2.78 0.81 -1.85 1.93 1.52 -3.14 0.31 10000 AMP 1.50-006 8.09-012 2.70-010 4.46-009 6.36-008 5.01-007 2.14-006 2.56-006 4.51-007 1.26-007 4.10-008 PHI C 2.45 -2.58 2.09 -0.33 -2.70 1.03 -1.63 2.09 1.30 2.67 - 0.44

Figure 10. Printed output from ANIHOP sample case, page 9.

WAVE HOP CALCULATION OF VERTICAL ELECTRIC FIELD STRENGTH (V/M) FOR 1000 WATTS RADIATED POWER

FREQUENCY = 30.00KHZ, EARTH CONDUCTIVITY = 4.0000 MHO/M, RELATIVE PERMITIVITY = 80.00

IONOSPHERIC MODEL

SAN FRAN	SEAPATH	NIGHT	PHIA	= 200°5 DIH	'= 66₀9 HI	M= 0.510 G	AUSS	REFEREN	JE MEIGHT	= 79.400		
PHI	COS(PHI)		E			Т Амріттіі	M E		1 M F PHASE	нвот	HREF	
65 00	0 1.225	0 20000	7 200	0 22260	1 7 2 9	0 22900	4 467	0 63760		74 0	79.1	
27 00	0.9220	0 70470	7 1.47	0 77040	2 7 5 0	0 2 0 2 0 2 0	2 7 7 7 7	0 70450	-0.440	74.0	797	
73.00	0.2924	0.32130	3 4 1 3	0.33040	20199	0.30020	2 1 3 1	0.32150	- U • T T O	74.0	70,7	
78.00	0.2079	0.39860	3.238	0.34870	3.187	0.38770	3.225	0.34800	1.074	74.0	79.0	
80.00	0.1736	0.45690	3.1//	0.33570	చించి చేసిన	0.37550		0.40150	1.500	74.0	79.2	
81.00	0.1564	0.49220	3.153	0.32470	3.407	0.36420	3.466	0.43710	1.695	74.0	79.3	
82.00	0.1392	0.53160	3.134	0.31030	3.477	8.34890	3.542	0.47820	1.878	74.0	79.4	
DISTANCE	E	TOTAL	GR WAVE	HOP 1	HOP 2	HOP 3	HOP 4	HOP 5	HOP 6	H0P 7	HOP 8	HOP 9
600	AMP PHT C	5.83-004 0.01	3.44-004	3.41-004	9.51-005							
	11/12 0	0.01	0140	0016	7940							
800	AMP Phi C	2.49-004 2.90	2.08-004 0.59	3.29-004 -2.86	1.06-004 2.80							
1000	AMP PHI C	4.50~004 1.79	1.32-004 0.78	3.05-004 2.10	9.15-005 1.99							
1200	AMP	3.59-004	8.50-005	2.86-004	6.32-005	3.57-005	6.19-006	8.66-140				
	PHI C	1.47	0.98	1.42	-2.58	1.41	2.72	2.90				
1400	ΔMP	3.72-004	5.57-005	2.62-004	3-67-005	4.24-005	5.09-006	5.99-007				
2.700	PHI C	0.96	1.19	1.05	0.84	0.00	-2.94	1.47				
46.00	440	3 43 001	7	0 77 001	2 24 205	1 30 005	4 84 685	4 01 000				
1000	AMP	3.13-004	3.08-005	2.33-004	2.01-005	4.32-005	1.04~005	1.94~000				
	PHI C	0.79	1.39	0.88	∾0°75	0.48	-0.04	0.33				
1800	AMP	2.04~004	2.45-005	2.01-004	1.05-005	3.90-005	1.47-005	2.10-006				
	PHI C	1.03	1.59	0.82	-1.67	2.41	-1.69	1.36				
2000	4.40	4 15 001	4 65 005	4 60 00/	4 36 0.05	3 3 4 4 4 5	4 70 000	2 4 000				
2000	AMP	1.45-004	1.65~005	1.69-004	1.36~005	3.28-005	1.70-005	3.41-000				
	PHI C	0.61	1.80	0.84	-2.01	-0.94	-1.81	-1.71				
2200	AMP	1.12-004	1.11-005	1.41-004	1.73-005	2.78-005	1.79-005	5.08-006				
	PHI C	1.19	2.00	0.97	-2.58	-3.04	-0.74	2.82				
2400	AMP	1.56-004	7.51-006	1.15-004	1./5-005	2.47-005	1.76-005	6.31-006				
	PHI C	1.30	2.21	1.11	-3.13	0.92	1.40	2.30				
		6 97 995	C 44 000	0 10 000				6 00 005				
2600	AMP	0.8/-005	5.11-006	9.12-005	1.55-005	2.25-005	1.65-005	0.44-000				
	PHI C	1.39	2.41	1.25	2.54	-0.94	-2.01	2.81				
2800	AMP	8.33-005	3.48-006	7.15-005	1.50-005	2.07-005	1.52-005	7.20-006				
	PHI C	1.70	2.62	1.40	1.76	-2.46	1.41	-2.10				

Figure 11. Printed output from ANIHOP sample case, page 7.
8.24-005 2.38-006 5.54-005 2.02-005 1.93-005 1.44-005 7.19-006 3000 AMP 1.56 1.16 2.59 -0.32 0.20 PHI C 1.44 2.82 7.50-005 1.63-006 4.25-005 2.80-005 1.85-005 1.35-005 6.86-006 3200 AMP PHI C 1.68 3.03 1.73 0.88 1.59 -2.47 3.02 3400 AMP 8.41-005 1.12-006 3.23-005 3.49-005 1.80-005 1.28-005 6.38-006 PHI C 1.25 -3.05 1.91 0.79 0.79 1.99 0.02 3600 AMP 6.67-005 7.70-007 2.44-005 3.96-005 1.72-005 1.23-005 6.02-006 -2.85 2.09 0.80 0.16 0.44 -1.62 PHI C 0.88 3800 AMP 4.89-005 5.30-007 1.83-005 4.17-005 1.61-005 1.19-005 5.53-006 PHI C 0.80 -2.64 2.28 0.87 -0.34 -0.88 2.26 4000 AMP 3.24-005 3.66-007 1.37-005 4.13-005 1.51-005 1.16-005 5.08-006 -0.77 PHI C 8.75 -2.44 2.46 0.97 -2.00 0.17 4200 AMP 2.00-005 2.53-007 1.02-005 3.83-005 1.49-005 1.14-005 4.69-006 PHI C 1.49 -2.23 2.66 1.16 -1.07 -2.97 -1.66 4400 AMP 3.02-005 1.75-007 7.54-006 3.43-005 1.52-005 1.13-005 4.35-006 PHI C 1.88 -2.03 2.85 1.39 -1.23 2.49 3.02 4600 AMP 3.12-005 1.21-007 5.57-006 3.00-005 1.54-005 1.12-005 4.10-006 PHI C 1.72 -1.82 3.04 1.63 -1.23 1.79 1.63 4800 AMP 2.38-005 8.42-008 4.11-006 2.63-005 1.54-005 1.11-005 3.93-006 PHI C 1.37 -1.62 -3.04 1.80 -1.10 1.18 0.42 5000 AMP 1.63-005 5.84-008 3.02-006 2.26-005 1.54-005 1.13-005 3.80-006 PHI C 0.90 -1.41 -2.85 1.97 -0.87 0.66 -0.65 5200 AMP 1.28-005 4.06-008 2.22-006 1.90-005 1.55-005 1.15-005 3.73-006 PHI C 0.43 -1.21 -2.65 2.15 -0.58 0.24 -1.59 5400 AMP 1.20-005 2.83-008 1.62-006 1.58-005 1.59-005 1.15-005 3.71-006 PHI C 0.20 -1.00 -2.45 2.33 -0.28 -0.10 -2.42 5600 AMP 1.22-005 1.97-008 1.19-006 1.30-005 1.63-005 1.13-005 3.71-006 PHI C 0.23 -0.80 -2:25 2.52 0.02 -0.38 3.12 5800 AMP 1.26-005 1.37-008 8.67-007 1.05-005 1.66-005 1.11-005 3.78-006 PHI C 0.35 -0.59 -2.05 2.71 0.30 -0.64 2.46 6000 AMP 1.30-005 9.57-009 6.32-007 8.45-006 1.65-005 1.13-005 3.91-006 PHI C 0.43 -1.85 2.90 0.57 -0.39 -0.85 1.89 1.29-005 6.68-009 4.60-007 6.73-006 1.52-005 1.19-005 4.05-006 1.34-006 1.21-006 6200 AMP -1.00 PHI C 0.26 -0.18 -1.65 3.10 0.83 1.39 -1.08 -0.42 6400 AMP 8.95-006 4.67-009 3.35-007 5.32-006 1.36-005 1.28-005 4.18-006 1.27-006 1.16-006 -1.45 PHI C 0.09 0.02 -2.99 1.09 -1.06 0.94 -1.96 -1.87

Figure 12. Printed output from ANIHOP sample case, page 5.

ŝ

6600 AMP 6.99-006 3.26-009 2.44-007 4.18-006 1.19-005 1.36-005 4.39-006 1.23-006 1.12-006 PHI C -1.25 -2.79 1.37 -1.04 0.53 -2.75 0.00 0.22 3.10 6800 AMP 8.00-006 2.28-009 1.77-007 3.27-006 1.02-005 1.42-005 4.76-006 1.21-006 1.09-006 0.43 -1.05 -2.60 1.65 -0.95 0.18 PHI C -0.12 2.84 1.90 1.06-005 1.60-009 1.29-007 2.54-006 8.89-006 1.44-005 5.20-006 1.20-006 1.06-006 7000 AMP -0.09 PHI C -0.25 0.63 -0.85 -2.40 1.93 -0.80 2.24 0.80 1.28-005 1.12-009 9.32-008 1.97-006 8.03-006 1.43-005 5.54-006 1.19-006 1.04-006 7200 AMP PHI C -0.31 0.84 -0.65 -2.20 2.17 -0.62 -0.29 1.69 -0.21 1.36-005 7.84-010 6.76-008 1.51-006 7.12-006 1.39-005 5.70-006 1.24-006 1.03-006 7400 AMP PHI C -0.32 1.04 -0.45 -2.00 2.41 -0.40 -0.46 1.21 -1.13 7600 AMP 1.31-005 5.50-010 4.90-008 1.16-006 6.21-006 1.32-005 5.75-006 1.32-006 1.02-006 -0.62 PHI C -0.28 1.25 -0.24 -1.80 2.63 -0.17 0.82 -1.96 1.20-005 3.86-010 3.55-008 8.90-007 5.35-006 1.25-005 5.88-006 1.39-006 1.01-006 7800 AMP PHI C -0.19 1.45 -0.04 -1.60 2.86 0.08 -0.78 0.50 -2.72 1.09-005 2.71-010 2.57-008 6.79-007 4.55-006 1.16-005 6.27-006 1.45-006 1.01-006 8000 AMP PHI C -0.09 1.66 0.16 -1.40 3.08 0.33 -0.92 0.22 2.87 8200 AMP 1.04-005 1.90-010 1.86-008 5.17-007 3.83-006 1.06-005 6.93-006 1.53-006 1.02-006 5.89-007 3.13-007 PHI C 0.03 1.86 0.36 -1.20 -2.99 0.57 -1.00 -0.07 2.24 0.98 1.48 8400 AMP 1.03-005 1.34-010 1.35-008 3.92-007 3.19-006 9.51-006 7.73-006 1.72-006 1.03-006 5.88-007 3.04-007 PHI C -0.06 0.57 -2.77 0.81 -1.01 -0.33 2.07 -1.00 1.68 0.06 0.15 9,89-006 9.39-011 9.73-009 2.97-007 2.64-006 8.34-006 8.51-006 1.99-006 1.04-006 5.91-007 2.95-007 8600 AMP PHI C -0.21 2,27 0.77 -0.79 -2.56 1.06 -0.96 -0.53 1.19 -0.79 -1.08 9.48-006 6.61-011 7.04-009 2.24-007 2.16-006 7.18-006 9.13-006 2.29-006 1.04-006 5.94-007 2.89-007 8800 AMP PHI C -0.33 2.48 0.97 -0.59 -2.34 1.31 -0.85 -0.64 0.73 -1.57 -2.23 9.33-006 4.65-011 5.09-009 1.69-007 1.76-006 6.07-006 9.53-006 2.52-006 1.06-006 6.02-007 2.83-007 9000 AMP -0.70 -0.71 PHI C -0.37 2.68 1.17 -0.39 -2.13 1.57 0.32 -2.30 2.98 9.46-006 3.27-011 3.68-009 1.27-007 1.43-006 5.05-006 9.67-006 2.64-006 1.10-006 6.15-007 2.79-007 9200 AMP PHI C -0.33 -0.19 1.84 -0.53 -0.76 -0.02 -2.97 1.98 2.89 1.38 -1.92 9400 AMP 9.50-006 2.31-011 2.66-009 9.57-008 1.15-006 4.32-006 9.59-006 2.68-006 1.13-006 6.27-007 2.78-007 -0.34 -0.83 -0.30 PHI C -0.26 3.09 1.58 0.01 -1.71 2.12 2.71 1.05 9600 AMP 9.30-006 1.63-011 1.92-009 7.18-008 9.18-007 3.72-006 9.30-006 2.73-006 1.13-006 6.39-007 2.77-007 -0.13 -0.94 -0.54 6.19 PHI C -0.19 -2.99 1.78 0.22 -1.50 2.40 2.15 8.74-006 1.15-011 1.39-009 5.38-008 7.32-007 3.20-006 8.87-006 2.91-006 1.13-006 6.61-007 2.78-007 9800 AMP PHI C -0.14 -2.78 1.99 0.42 -1.29 2.67 0.09 -1.06 -0.77 1.62 -0.61 7.88-006 8.09-012 1.00-009 4.03-008 5.81-007 2.74-006 8.32-006 3.29-006 1.17-006 6.90-007 2.82-007 10000 AMP PHI C -0.12 -2.58 2.19 0.62 -1.08 2.94 0.32 -1.15 -0.99 1.16 -1.36

Figure 13. Printed output from ANIHOP sample case, page 6.

32

+ 1

6. REFERENCES

- Barghausen, A. F., J. W. Finney, and R. M. Fisher (1966), "Radio broadcasting on medium frequencies," unpublished NBS Report 9196.
- Belrose, J.S. (1968), "Low and very low frequency radio wave propagation," <u>Radio Wave Propagation</u> (edited by K. Davies), AGARD Lecture Series XXIX, AD-676 788.
- Berry, L. A. (1964), "Wave hop theory of long distance propagation of low-frequency radio waves," Radio Science 68D, No. 12.
- Berry, L. A. (1967), "Wave hop radio propagation theory," MF, LF, and VLF Radio Propagation, IEE (London) Conference Publication No. 36.
- Berry, L. A. and M. E. Chrisman (1965a), "FORTRAN programs for full-wave calculation of LF and VLF radio propagation," unpublished NBS Report 8889.
- Berry, L. A. and M. E. Chrisman (1965b), "Numerical values of the path integrals for low and very low frequencies," NBS Tech. Note 319.
- Berry, L. A. and M. E. Chrisman (1965c), "The path integrals of LF/VLF wave hop theory," Radio Sci. J. Res. NBS 68D, No. 11.
- Berry, L. A., G. Gonzalez, and J. L. Lloyd (1969), "Wave-hop series for an anisotropic ionosphere," Radio Science 4, No. 11.
- Berry, L. A. and R. M. Jones (1970), "A time-varying electron density model for LF/VLF propagation calculations, "Telecommunications Tech. Memo. OT/ITSTM 3.

Davies, K. (1965), Ionospheric Radio Propagation, NBS Monograph 80,

- Fock, V. A. (1965), <u>Electromagnetic Diffraction and Propagation</u> Problems (Pergamon Press, N. Y.)
- Gambill, B. and W. S. Knapp (1969), "A FORTRAN code for the calculation of VLF and LF propagation in a nuclear environment," (WEDCOM), DASA 2273 (General Electric Company, Santa Barbara, Calif.).

- Johler, J. R. (1970), "Spherical wave theory for MF, LF," and VLF propagation, Radio Sci. 5, No. 12.
- Johler, J. R. and J. D. Harper, Jr. (1962), "Reflection and transmission of radio waves at a continuously stratified plasma with arbitrary magnetic induction," J. Res. NBS 66D, No. 1.
- Kaplan, W. (1952), <u>Advanced Calculus</u> (Addison-Wesley Publishing Co., Inc., Reading, Mass.).
- Lewis, R. L. (1971), "The wave hop fields for an inclined dipole over a spherical earth with an anisotropic ionosphere," OT Telecommunications Report
- Morfitt, D. G. and R. F. Halley (1970),"Comparison of waveguide and wave hop techniques for VLF propagation modeling," NWC Tech. Publication 4952, Naval Weapons Center, China Lake, California.
- Morgan, R. R. (1968), "World-wide VLF effective-conductivity map," Westinghouse Report 80133F-1, submitted to Office of Naval Research, Washington, D. C. 20360.
- Pappert, R. A. (1968), "A numerical study of VLF mode structure and polarization below an anisotropic ionosphere," Radio Sci. 4, No. 3.
- Sheddy, C., Y. Gough, and R. Pappert (1968), "An improved computer program for VLF mode constants in an earth-ionosphere waveguide of arbitrary electron density distribution," Interim Report No. 682, Naval Electronics Laboratory Center, San Diego, Calif.
- Wait, J. R. (1961), "A diffraction theory of LF sky-wave propagation," J. Geophys. Res. 66, No. 6.
- Wait, J. R. (1962), <u>Electromagnetic Waves in Stratified Media</u> (Pergamon Press, N. Y.).
- Wait, J. R. (1968), "Recent theoretical advances in the terrestrial propagation of VLF electromagnetic waves," (Adv. in Electronics and Electron Physics, Vol. 25, Academic Press Inc., N.Y.).

Watt, A. D. (1967), VLF Radio Engineering (Pergamon Press, N. Y.)

PROGRAM ANIHOP

C C C C C

С

A PROGRAM TO COMPUTE LF/VLF RADIO PROPAGATION USING WAVE HOP THEORY. REFERENCE. A WAVE HOP PROPAGATION PROGRAM FOR AN ANISOTROPIC IONOSPHERE BY L.A. BERRY AND J.E. HERMAN,(ITS, BOULDER, COLO,

80302) TELECOMMUNICATIONS RESEARCH REPORT NO. 11.

DIMENSION AMP(9),ATI(12),ATR(12),CPHI(13),E(9),FTX(2),G(48) 1,HOP(9,9),HREF(12),ID(10),JGO(9),NH(4),O(96),PH(9),PHI(12) 2,PT(45,96),Q(2),R(2,5,5),SD(96),T(40),TA(9,4) 3,TAMP(4,13),TPHA(4,13),TPR(4,13),TPI(4,13),W(48),XD(4)

COMMON/PAIN/X,Y,Z,DMIN,XDIST,DSAV,A1,A2,Q,KMAX,T COMMON/WGW/QKA1,QKA2,FK,AK1,V,V2, THETA,STH

COMPLEX B,C,Cl,C2,DT1,DT2,E,ETA,F1,F2,F3,GW,HOP,O,PT,Q,QKA2,R,RE, 1RM,RR,R1,R12,R2,R21,R3,R4,R5,S,SD,SQ2,SUM,S1,S2,T,TA,T1,T2,TY1,TY2

- 1 FORMAT(F5.1., F4.1., 2F6.1., F7.1., I2., I3., F7.1., 2I2., 4(F7.1., I2))
- 2 FORMAT(2A8,A3,A8,4X,A5,A6,A4,4A8, * REFERENCE HEIGHT =*,F8.3)

3 FORMAT(F6.1,F4.1,4(E9.3,F6.3),2F5.1)

4 FORMAT(2A8, A3, A8, 4X, A5, A6, A4, 4A8)

5 FORMAT(1H1,10X,* WAVE HOP CALCULATION OF VERTICAL ELECTRIC FIELD S 1TRENGTH (V/M) FOR *,F8.0,* WATTS RADIATED POWER*//10X, 211HFREQUENCY = ,F9.2,*KHZ, EARTH CONDUCTIVITY =*,F8.4,* MHO/M, 3RELATIVE PERMITIVITY =*,F7.2//40X,*IONOSPHERIC MODEL*//)

- 7 FORMAT(1H1,8X,5HW(49),15X,5HW(50)/(2E20.8))
- 8 FORMAT(1HOF7.0, * AMP *, 11E10.2)
- 9 FORMAT(9X,*PHI C *, F6.2, 10F10.2)

С

ABSCISSA (G) AND WEIGHTS (W) FOR GAUSSIAN INTEGRATION

G(1)=9987710073	\$ G(2)=9935301723 \$	G(3)=9841245837
G(4)=9705915925	\$ G(5)=9529877032 \$	G(6)=-•9313866907
G(7)=9058791367	\$ G(8)=8765720203 \$	G(9)=-•8435882616
G(10) =8070662040	\$ G(11)=7671590325	\$ G(12)=7240341309
G(13) =6778723796	\$ G(14)=-•6288673968	\$ G(15)=5772247261
G(16) = -5231609747	\$ G(17)=4669029048	\$ G(18)=4086864820
G(19) = -0.3487558863	\$ G(20)=2873624874	\$ G(21)=2247637904
G(22) =1612223561	\$ G(23)=09700469921	\$ G(24)=03238017096
G(25) = 03238017096	\$ G(26)=.09700469921	\$ G(27)=.1612223561
G(28)=•2247637904	\$ G(29)=•2873624874 \$	G(30)=•3487558863
G(31) = .4086864820	\$ G(32)=•4669029048 \$	G(33)=•5231609747
G(34)=•5772247260	\$ G(35)=.6288673968 \$	G(36)=•6778723796
G(37)=•7240341309	\$ G(38)=•7671590325 \$	G(39)=.8070662040
G(40)=_8435882616	\$ G(41)=.8765720203 \$	G(42)=.9058791367
G(43)=•9313866907	\$ G(44)=•9529877032 \$	G(45)=.9705915925
G(46) = 09841245837	\$ G(47) = 9935301723 \$	G(48) = .9987710073

W(1)=.003153346052 \$ W(2)=.007327553901 \$ W(3)=.01147723458 W(4)=.01557931572 \$ W(5)=.01961616046 \$ W(6)=.02357076084 W(7) = 02742650971\$ W(8)=.03116722783 \$ W(9)=.03477722256 W(12) = .04467456086W(10) = 03824135107W(11)=•04154508294 \$ \$ W(15)=.05289018949 W(13) = 04761665849W(14) = 05035903555\$ \$ W(16) = 05519950370\$ W(17) = 05727729210\$ W(18) = .05911483970\$ W(21) = .06311419229W(19) = .06070443917. \$ W(20) = 0.06203942316W(22) = .06392423858W(23) = 06446616444\$ W(24) = .06473769681\$ W(26) = 06446616444W(27) = .06392423858W(25) = 06473769681\$ \$ W(30) = 06070443917W(28) = .06311419229\$ W(29)=•06203942316 \$ W(31) = 05911483970W(32) = 05727729210W(33) = .05519950370\$ \$ W(35) = 05035903555W(36) = .04761665849W(34) = 05289018949\$ \$ W(37) = 004467456086\$ W(38) = 004154508294\$ W(39)=.03824135107 W(42) = 02742650971W(40) = 03477722256W(41) = 03116722783\$ \$ W(45) = 01557931572W(44) = 0.01961616046\$ W(43) = 02357076084\$ W(46)=.01147723458 W(47)=.007327553901 \$ W(48)=.003153346052 \$ A1=6.36739E6 INPUT DATA 10 READ 1, CNDK, EPS2, DMIN, DELTA, DMAX, NHOP, NT, POWER, KASE, ICOND, 1(XD(I), NH(I), I=1, ICOND)CNDK = GROUND CONDUCTIVITY IN MHOS/METER EPS2 = DIELECTRIC CONSTANT OF THE GROUND RELATIVE TO FREE SPACE NOTE. THE GROUND WAVE AND THE FIRST NHOP HOPS WILL BE CALCULATED EVERY DELTA KM. FROM DMIN KM. TO DMAX KM USING NHOP HOPS, C С THEN ON TO XD(1) KM USING NH(1) HOPS, С THEN ON TO XD(2) KM USING NH(2) HOPS, С AND SO ON TO ICOND SECTIONS. THE MAX OF NHOP OR NH IS 9. NT = NUMBER OF ANGLES OF INCIDENCE FOR WHICH THE REFLECTION COEFFICIENTS ARE READ INTO THE PROGRAM POWER IS THE RADIATED POWER IN WATTS RELATIVE TO DIPOLE IN HALF SPACE KASE = 1, THE AMPLITUDE AND PHASE OF THE WAVE HOPS ARE PUNCHED ON DATA CARDS - KASE = 0, NO DATA CARDS ARE OBTAINED DS=-1. IF = 1Ç CONTROL VARIABLES. DS IS DISTANCE MEMORY IN INTEGRATION LOOP. С IF IS USED TO INDICATE FIRST OR SUBSEQUENT ENTRY TO CWGW. С DSAV AND KMAX ARE USED IN LPAINR TO PREVENT RECALCULATION OF С AVAILABLE NUMBERS. DSAV=-1. \$ KMAX=0ICD=0 MHOP=NHOP XDIST=DMAX IF(EOF,60)999,20 20 IF(ICOND .LE. 0) GO TO 25 MHOP=NH(ICOND) XDIST=XD(ICOND) IDENTIFICATION OF THE PROFILE 36

С

С

С С

С

С

С С

С

C С

С

25 READ 4, ID(1), ID(2), ID(3), ITIM, IPHI, PHIA, ID(4), ID(5), ID(6), ID(7), 7ID(8)THESE PARAMETERS ARE FOR IDENTIFICATION ONLY AND USUALLY ۰C С INCLUDE A NAME, TIME, GEOGRAPHIC AZIMUTH, DIP ANGLE, С AND MAGNETIC FIELD INTENSITY. С С READ ANISOTROPIC REFLECTION COEFFICIENTS DO 30 N=1,NT READ 3, FREQ, PHI(N), (TAMP(L, N), TPHA(L, N), L=1,4), HBOT, HREF(N) FREQ = FREQUENCY IN KHZС PHI = ANGLE OF INCIDENCE IN DEGREES ¢ TAMP = AMPLITUDE OF REFLECTION COEFFICIENT C С TPHA = PHASE OF REFLECTION COEFFICIENT NOTE. THE REFLECTION COEFFICIENTS SHOULD BE GIVEN IN THE С FOLLOWING ORDER- TEE, TEM, TME AND TMM С HBOT = BOTTOM OF THE PROFILE IN KM С С HREF = REFLECTION HEIGHT IN KM 30 CPHI(N)=COSF(PHI(N)*.01745329252) OMEGA=FREQ*6283.185307 QKA1=WAVE=OMEGA/2.997925E8 NPI=(CPHI(NT-1)*TPHA(1,NT)-CPHI(NT)*TPHA(1,NT-1))/ 1(6.283185307*(CPHI(NT-1)-CPHI(NT))) H=HREF(NT)+NPI*6.283185307/(2.*WAVE*CPHI(NT))*.001 С CALCULATION OF THE VARIABLES THAT ARE NOT A FUNCTION С С OF DISTANCE AK1=A1*QKA1 A2=A1+H*1.E3 SQ2=CMPLX(WAVE*WAVE*EPS2,-12.56637061E-7*OMEGA*CNDK) QKA2=CSQRT(SQ2) R12=QKA1/QKA2 R21=QKA2/QKA1 V=CUBERTF(AK1/2.) V2=V*V Y=QKA1*H*1000./V 33 FK= 30.* SQRT(3.141592653*POWER/120.) Z=1.25/V2 $Q(1) = V \times R12 \times (0 \circ 9 - 1 \circ) \times CSQRT(1 \circ - R12 \times R12)$ ETA=R21*R21 Q(2) = ETA * Q(1)С С INITIALIZE С SIGNALS FIRST TIME IN NUMERICAL INTEGRATION NN=1NN = 1DO 35 J=1,MHOP AMP(J)=035 PH(J)=0.

```
С
                   PRINT LABELS AND VALUES OF CONSTANTS
      PRINT 5, POWER, FREQ, CNDK, EPS2
      PRINT2, ID(1), ID(2), ID(3), ITIM, IPHI, PHIA, ID(4), ID(5), ID(6), ID(7),
     7ID(8),H
      PRINT 36
   36 FORMAT( *0
                   PHI COS(PHI)*, 7X, *T E E*, 15X, *T E M*, 15X, *T M
     1E*,15X, *T M M*, 12X, *HBOT*, 5X, *HREF*/
                 AMPLITUDE PHASE *))
     215X, 4(*
С
С
                   ADJUST PHASE OF T TO REFERENCE HEIGHT
      DO 55 L=1,4
      DO 40 N=1,NT
      TPHA(L,N)=TPHA(L,N)+2.*WAVE*(H-HBOT)*CPHI(N)*1000.
      IF(TPHA(L))GT6283185307) TPHA(L)=MODF(TPHA(L))
     1 6.283185307)
   40 CONTINUE
         MAKE PHASE OF REFLECTION COEFFICIENT CONTINUOUS AS A FUNCTION
C
С
              OF COS(PHI)
      CALL GUDFAZ(L, CPHI, TPHA, NT)
С
С
                   COMPUTE A FOR THIS ANGLE
      DO 50 N=1.NT
      IF(L .EQ. 2 .OR. L .EQ. 3) GO TO 47
      IF ( L .EQ. 4)
     IPRINT 37, PHI(N), CPHI(N), (TAMP(I,N), TPHA(I,N), I=1,4), HBOT, HREF(N)
   37 FORMAT( F7.2, F8.4, 4(F10.5, F10.3), 2F10.1)
   45 TPR(L,N)=LOGF(TAMP(L,N))/CPHI(N)
      TPI(L_{N}) = (TPHA(L_{N}) - 3.141592653)/CPHI(N)
      GO TO 50
   47 TPR(L,N) = TAMP(L,N)
      TPI(L,N) = TPHA(L,N)
   50 CONTINUE
   55 CONTINUE
      PRINT 39
   39 FORMAT(*ODISTANCE*,8X,*TOTAL*, 5X, *GR WAVE*, 3X, *HOP 1*, 5X,
     1*HOP 2*, 5X, *HOP 3*, 5X, *HOP 4*, 5X, *HOP 5*, 5X, *HOP 6*, 5X,
     2*HOP 7*, 5X, *HOP 8*, 5X, *HOP 9*)
С
С
C
      INITIALIZE JGO,
                           METHOD SELECTOR FLAG FOR CALCULATING I SUB J,M
С
С
                   GEOMETRICAL OPTICS FOR SHORTEST DISTANCES
                                                                  JG0 = 4
С
                   SADDLE POINT FOR SHORT DISTANCES
                                                                  JG0=3
С
                   NUMERICAL INTEGRATION FOR LONG DISTANCES
                                                                  JG0=2
Ç
                   RESIDUE SERIES FOR LONGEST DISTANCES
                                                                  JG0=1
С
                        (UNLESS NHOP .GT. 5, THEN USE NUM. INTEG.)
      DO 79
             J=1,MHOP
```

C

```
JGO(J)=4
      IF(COSF(DMIN/(.002*J*A1)) .LE.
                                       (A1/A2))
                                                   JGO(J)=1
   79 CONTINUE
С
С
                   BEGINNING OF THE LOOP DMIN (DELTA) DMAX - LOOP ENDS
С
                   AT 995
   80 THETA=DMIN*1.E3/A1
      X=V*THETA
      X2=X*X
      STH=SIN(THETA)
      AK1D=QKA1*DMIN*1000.
      F3=FK/SQRT(A1*A1*THETA*STH)
      F2= SQRT(2.*X/3.141592653)*F3*(-1..)
      F1= (0., 6.283185307) *F2
      DO 85 J=1,MHOP
      DO 85 M=1,J
   85 HOP(J,M)=0
С
С
                   CALCULATION OF E SUB 0, THE GROUND WAVE
      CALL CWGW( IF, DMIN, 0.,0.,1., GW , Q(1), X,Z)
      SUM = GW
С
С
         BEGIN HOP LOOP
С
      DO 980 J=1;NHOP
      TUJ=2*J
      TOTJ=THETA/TUJ
      GO TO (700,500,300,100), JGO(J)
С
С
С
           BEGIN GEOMETRICAL OPTICS METHOD OF CALCULATING I SUB J,M
С
  100 DJ=TUJ *SQRTF(2.*A1*A2*OMCOS(TOTJ)+H*H*1.E6)
      SINTAU=TUJ *A2*SINF(TOTJ)/DJ
      COSSQT=1.-SINTAU*SINTAU
      COSTAU=SQRTF(COSSQT)
      COSPHI =(DJ+TUJ*A1*COSTAU)/(TUJ*A2)
      COS5=COSSQT*COSSQT*COSTAU
С
         IS COS TAU SMALL ENOUGH TO USE SADDLEPOINT FORMULA
      IF(COS5 •LE• 1•/AK1)
                                  GO TO 295
  150 BJ=A2/A1*SQRTF(DJ*SINTAU*COSPHI/(A2*STH*COSTAU))
      S=(0.,1.)*V*COSTAU
      C1 = CMPLX(COSPHI,0.)
      RM = (S+Q(2))/(S-Q(2))
      RE=(S+Q(1))/(S-Q(1))
      P= QKA1*DJ-AK1D
      S1=BJ*SINTAU*SINTAU* FK/DJ*(1.+RE)**2
     1 * CMPLX(COS(P),-SIN(P))
      HOP(J,1) = S1*RE**(J-1)
      DO 175 M=2,J
```

```
39
```

.

```
175 \text{ HOP}(J,M) = \text{HOP}(J,M-1) \times \text{RM/RE}
       GO TO 900
C
  295 \ JGO(J) = JGO(J) - 1
C
C
С
            BEGIN SADDLE POINT METHOD OF CALCULATING I SUB J,M
C
  300 P=(4.*J*J*Y-X2)/(4.*X*J)
С
          IS P SO SMALL WE MUST INTEGRATE NUMERICALLY
       IF(P .LT. 2.+(J-1.)*.15)
                                         GO TO 495
  301 P2=P*P
       DJ=SQRT(Y+P2)
       C1= CMPLX (DJ/V,0.)
       OMEGA = -X*P2+1.3333333*J*((Y+P2)*DJ-P2*P)
       S2 = CMPLX(0 \bullet P)
       RE=(S2+Q(1))/(S2-Q(1))
       RM = (S2 + Q(2)) / (S2 - Q(2))
       S = SQRT((1.+X/(2*J*P))*(1.-.5*P2/V2)**5)*(1.+RE)**2
      1 *CMPLX(COS(OMEGA), -SIN(OMEGA))*RE**(J-1)
       HOP(J,1) = F3*S
       DO 475 M=2,J
  475 HOP(J,M) = HOP(J,M-1)*RM/RE
       GO TO 900
С
  495 \ JGO(J) = JGO(J) - 1
С
C
C
                     THE PATH INTEGRALS ARE CALCULATED USING NUMERICAL
С
                     INTEGRATION.
                                                         GAUSSIAN INTEGRATION
                     IS USED WITH 48 ABSCISSAS AND WEIGHTS. THE CONTOURS OF INTEGRATION CONSIST OF TWO SEGMENTS, T GOING
Ċ
С
                     FROM 4 TO 0 AND THEN INTO THE LOWER HALF PLANE AT A
С
С
                     SLOPE OF 1/4
С
  500 IF(COSF(THETA/TUJ)
                                      •LE• A1/A2)
                                                         GO TO 695
C
          IF WE ARE IN THE SHADOW REGION (TAU .GE. 90 DEGREES)
С
               USE RESIDUE SERIES.
  501 IF(NN.EQ.2)GO TO 600
С
С
                     THE FIRST TIME A HOP IS CALCULATED WITH NUMERICAL
C
                     INTEGRATION THE COEFFICIENT OF E**(-IXT) IS
С
                     DETERMINED FOR THE GAUSSIAN ABSCISSAS AND STORED FOR
С
                     FUTURE USE
      TOP=0.
      BOT=4.
      KK=0
      DO 590 L=1,2
      DO 575 K=1,48
       KK=KK+1
```

```
IF(L.EQ.2)GO TO 520
      0I=0•
      OR=((TOP-BOT)*G(K)+TOP+BOT)*.5
      GO TO 525
  520 OI=((TOP-BOT)*G(K)+TOP+BOT)*•5
      OR= OI*4.
  525 O(KK) = CMPLX(OR, OI)
      CALL CWAIRY(1,O(KK),T1,M1,T2,M2)
      CALL CWAIRY(2,O(KK),DT1,MD1,DT2,MD2)
      CALL CWAIRY(1,0(KK)-Y,TY1,MTY1,TY2,MTY2)
      S2=DT1*(2.718281828**MD1)-Q(1)*T1*(2.718281828**M1)
      R1=(1.+Z*O(KK))/(S2*S2)
      R2=2.718281828**(MTY1-MTY2)*TY1/TY2
      R3=2.718281828**(M2-M1)*T2/T1
      S1=2.718281828**(MD2-M2)*DT2/T2
      S2=2.718281828**(MD1-M1)*DT1/T1
      R4=(S1-Q(1))/(S2-Q(1))
      R5=(S1-Q(2))/(S2-Q(2))
      S1= (1.,0.)
      RR= R1/R3
      JM=0
      DO 575 JJ=1,MHOP
      RR =-RR*R2*R3
      JM=JM+1
      PT(JM,KK)=RR*S1
С
                   PT(JM,KK) = THE ARRAY OF COEFFICIENTS OF E**(-IXT)
С
С
                   FOR THE 48 GAUSSIAN ABSCISSAS
С
            NOW CALCULATE PT FOR ALL HOPS
С
С
      S1= S1*R4
      DO 574 M=2,JJ
      MJ=JM
      JM=JM+1
  574 PT(JM,KK)=PT(MJ,KK)*R5/R4
  575 CONTINUE
      FTX(L)=•5*(TOP-BOT)
      BOT=0.
  590 TOP=-9./(2.*SQRTF(4.+Y)-4.)
      NN=2
  600 KK=0
С
С
                   CALCULATION OF THE INTEGRAL
      DO 650 L=1,2
      DO 650 K=1,48
      HH=W(K)*FTX(L)
      KK=KK+1
      IF(DS .EQ. DMIN)
                            GO TO 625
      IF(L.EQ.2)GO TO 620
      ARG=X*REAL(O(KK))
      SD(KK)=CMPLX(COSF(ARG),-SINF(ARG))
      GO TO 625
```

```
41
```

```
620 SD(KK)=CEXP(CMPLX(0.,-X)*O(KK))
  625 CONTINUE
       JM = (J*(J-1))/2
      DO 650 M=1,J
      JM=JM+1
      IF(L.EQ.2)GO TO 630
C
C
                     SUMMING OF THE INTEGRAND FOR THE FIRST INTERVAL
С
                                          REAL PLANE
      HOP(J,M)=HOP(J,M)+HH*PT (JM,KK)*SD(KK)*F2
      GO TO 650
С
С
                     SUMMING OF THE INTEGRAND FOR THE SECOND INTERVAL
C
                                          COMPLEX PLANE
  630 B=PT (JM,KK)*SD(KK)
      S1=B*(4.,1.)
      HOP(J,M) = HOP(J,M) + HH + S1 + F2
  650 CONTINUE
      ALP = (4_{\bullet} * J * J * Y - X2) / (4_{\bullet} * X * J)
      C1= CMPLX(SQRT(Y+ALP*ALP)/V,0.)
      DS=DMIN
      GO TO 900
С
  695 IF(J •GT• 5)
                           GO TO 501
      JGO(J) = JGO(J) - 1
С
C
C
                     THE PATH INTEGRALS ARE CALCULATED WITH THE RESIDUE
С
                     SERIES
Ç
  700 MO=0
  800 DO 850 K=1,20
С
          LPAINR COMPUTES THE RESIDUES FOR ALL M FOR THIS J.
      CALL LPAINR(J,K,R)
      DO 825 M=1,J
      HOP(J,M) = HOP(J,M) - (R(1,J,M) + R(2,J,M)) * F1
      IF(K.EQ.1)GO TO 825
      IF(CABS(((R(1,J,M)+R(2,J,M))*F1)/HOP(J,M)) •GT• 0.0005) GO TO 825
      MO=MO+1
      IF(MO .NE.
                   J)
                          GO TO 825
      GO TO 885
  825 CONT/INUE
  850 CONTINUE
  885 CONTINUE
      DCRIT = SQRT( •008*A1*H)
      S1= MINIF( 1., (DMIN-J*DCRIT)/(300*J))*T(1)
      C1= CSQRT((2000.*H/A1-S1
                                    /V2)/(1.+2000.*H/A1))
С
С
                    COMPUTE TEE, TEM, TME AND TMM
```

```
900 CONTINUE
      IF(JGO(J) .EQ. 1) GO TO 904
  895 C1= CMPLX( (A1*OMCOS(TOTJ)+H*1000•)/SQRT(2•*A1*A2*OMCOS(TOTJ) +
     1 H*H*1.E6),0.)
         IF PHI IS MUCH SMALLER THAN ANY INPUT VALUE, SET TA (AND HENCE
С
              THIS HOP) TO A VERY SMALL VALUE AS AN INDICATOR.
C
  904 CONTINUE
      IF(REAL(C1) .LT. 1.2*CPHI(1)) GO TO 905
      TA(J_{9}1) = TA(J_{9}2) = TA(J_{9}3) = TA(J_{9}4) = 1 \cdot E - 25
      GO TO 940
  905 C2=C1*C1
      NL=NT-1
      NI = 1
              $ NIP = NI+1
      CY = REAL(C1)
Ç
         DETERMINE WHICH VALUES OF T(COS(PHI)) TO USE IN INTERPOLATION
      IF( CY .GT. CPHI(1)) GO TO 908
  906 IF((CY .LE. CPHI(NI)) .AND. (CY .GT. CPHI( NIP))) GO TO 908
      IF(NI .GE. NL) GO TO 908
      NI = NIP
                  \$ NIP = NIP +1
      GO TO 906
  908 CX = CPHI (NI) - CPHI(NIP)
         INTERPOLATE TO GET A SUB 1 AND A SUB 2
С
      DO 925 L=1,4
      ATR( 2) = (TPR(L,NI) - TPR(L,NIP))/CX
            2) = (TPI(L,NI) - TPI(L, NIP))/CX
      ATI (
            1) = TPR(L,NIP) - ATR(2) + CPHI(NIP)
      ATR (
             1) = TPI(L,NIP) - ATI(
                                     2)*CPHI(NIP)
      ATI(
      IF(L.EQ.1.OR.L.EQ.4)GO TO 920
      DY=ATI( 1)+ATI( 2)*REAL(C1)
      DX=EXP(-ATI( 2)*AIMAG(C1))
      TA(J_L) = (ATR(1) + ATR(2) * C1) * DX * CMPLX(COS(DY) + SIN(DY))
      GO TO 925
  920 S=CMPLX(ATR( 1),ATI( 1))*C1+CMPLX(ATR( 2),ATI( 2))*C2
      TA(J,L) = -CEXP(S)
  925 CONTINUE
С
С
                    CALCULATION OF C SUB J,M
  940 E(J)=HOP(J,1)*TA(J,1)**J
      DO 960 M=2,J
      C=0.
      AJMK = J - M + 1
      M1 = M - 1
      DO 950 K=1,M1
      IF(K.EQ.1)GO TO 950
      AJMK = (J+2-M-K) * (M-K) / (K*(K-1)) * AJMK
  950 C
                    +AJMK*TA(J,1)**(J+1-M-K)*(TA(J,2)*TA(J,3))**K*TA(J,4)
            =C
     1**(M-1-K)
```

```
43
```

```
C
C
                    CALCULATION OF E SUB J, THE WAVE HOPS.
  960 E(J) = E(J) + HOP(J_{9}M) * C
С
                    CALCULATION OF E SUB R, THE VERTICAL ELECTRIC FIELD
      SUM=SUM+E(J)
      AMP(J) = CABS(E(J))
  980 \text{ PH}(J) = -CANG(E(J))
C
C
       END OF J LOOP
C
      GAMP=CABS(GW)
      GPH = -CANG(GW)
      SAMP=CABS(SUM)
     SPH = - CANG(SUM)
С
C
C
                    PRINT AND PUNCH OUTPUT
      PRINT 8, DMIN, SAMP, GAMP, (AMP(J), J=1, NHOP)
      PRINT 9, SPH, GPH, (PH(J), J=1, NHOP)
  990 IF(KASE.EQ.0)GO TO 995
      PUNCH 12, FREQ, ID(1), ID(2), ITIM, PHIA, DMIN, SAMP, CNDK
   12 FORMAT(F7.1,2A8,2X,A8,A6,F9.2,E20.8,F6.1)
C
C
                    END OF LOOP DMIN (DELTA) DMAX
  995 DMIN=DMIN+DELTA
      IF(DMIN-DMAX)80,80,1000
  999 CALL EXIT
 1000 IF(ICD .GE. ICOND) GO TO 10
      ICD=ICD+1
      DMAX=XD(ICD)
      NHOP=NH(ICD)
      GO TO 80
      END
```

SUBROUTINE LPAINR(J,K,R) С SUBROUTINE FOR ANIHOP. COMPUTES RESIDUES FOR GIVEN J,K, AND С DISTANCES. С IMPORTANT ARRAYS E AND A MUST HAVE THE SAME FIRST DIMENSION FOR USE С С IN DEPROD TYPE INTEGER TUJ COMPLEX QOTOWOTEOEOAOBJMOAJMOSUMODAOZXOARGOEXOAHATOR DIMENSION Q(2), T(40), W(8,2,2), MW(20,2,4), TE(2), E(7,2,2), A(7,15) 1,BJM(6,20,6),AJM(7,20,15),DA(7),EX(6,40),AHAT(6),R(2,5,5) COMMON/PAIN/X, Y, Z, DMIN, XDIST, DSAV, A1, A2, Q, KMAX, T COMMON/PROD/C COMPLEX C(7,15) DATA (EC=2.718281828) NP(N) = IZ*5+IS*NLP(L,N) = L+IZ*(IZ*5+IS*N)С IF THIS IS THE FIRST ENTRY FOR THIS MODEL, COMPUTE JRES IF(DSAV .GT. 0.) GO TO 5 JRES=MINOF(5,XFIXF(XDIST/(.002*A1*ACOSF(A1/A2)))) KEX=05 IQ=1 С IQ=1 FOR Q SUB E POLES. IQ=2 FOR Q SUB M POLES. IZ=0 IS=1 NDER=JRES+1 JN=J+1КК = К \$ IW=1 IY=2 \$ SIGN = (-1) * * (J-1)С IF WE HAVE COMPUTED A S AND B S FOR THIS K, GO TO 240 10 IF(K .LE. KMAX) GO TO 240 С FROM HERE TO 200, COMPUTE AJM AND BJM FOR THIS K. С FIRST, FIND T(K) AND AIRY FUNCTIONS OF T. С TW FINDS SOLUTIONS OF E1(T,Q)=0. 20 CALL TW(K-1,Q(IQ),T(KK),W(1,1,1),MW(K,1,IW),W(2,1,1),MD1, AW(1,2,1),MW(K,2,IW),W(2,2,1),MD2) TE(1)=T(KK)TE(2) = TE(1) - YW(2,1,1)=(EC**(MD1-MW(K,1,1,W)))*W(2,1,1)W(2,2,1) = (EC**(MD2-MW(K,2,IW)))*W(2,2,1)CALL CWAIRY(1,TE(2),W(1,1,2),MW(K,1,1Y),W(1,2,2),MW(K,2,IY)) CALL CWAIRY(2, TE(2), W(2, 1, 2), MD1, W(2, 2, 2), MD2) $W(2_{9}1_{9}2) = (EC * * (MD1 - MW(K_{9}1_{9}1Y)) * W(2_{9}1_{9}2)$

```
W(2,2,2)=(EC**(MD2-MW(K,2,IY)))*W(2,2,2)
С
         NOW GET HIGHER DERIVATIVES OF W AND E
      NTOP=NDER+2
      DO 30 N=3,NTOP
      DO 29 I=1,2
      DO 28
             KIND=1,2
      W(N \circ KIND \circ I) = TE(I) * W(N-2 \circ KIND \circ I) + (N-3) * W(N-3 \circ KIND \circ I)
      E(N-1,KIND,I) = W(N,KIND,1) - Q(I) * W(N-1,KIND,1)
      IF(N .GT. 3) GO TO 28
      E(1 \times IND \times I) = W(2 \times IND \times I) - Q(I) \times W(1 \times IND \times I)
   28 CONTINUE
   29 CONTINUE
   30 A(N-2,1) = W(N-2,1,2)
          W SUB ONE (T-Y) AND DERIVATIVES ARE IN COL. 1 OF A.
С
С
         NOW COMPUTE BJM
   40 BJM(LP(1,1),K,NP(1))=E(2,1,IQ)
      DO 50 N=2,NDER
      BJM(LP(1,N),K,NP(N)) = BJM(LP(1,N-1),K,NP(N-1))*E(2,1,IQ)
      DO 48 L=2,N
      SUM=0.
      KF=1
      KKT=L-1
      DO 46 KI=1.KKT
      KF = KF * (KI + 1)
      SUM=(KI*(N+1)-KKT)/(KKT*KF)*BJM(LP(L-KI,N),K,NP(N)) *
     1 E(KI+2,1,IQ)+SUM
   46 CONTINUE
   48 BJM(LP(L,N), K, NP(N)) = SUM/E(2,1,IQ)
   50 CONTINUE
          DERINV FINDS DERIVATIVES OF 1/F.
С
      CALL DERINV(W(1,2,2),NDER-1,A(1,2))
          GET W/W AND DERIVATIVES AND PUT IN COL. 2 OF A.
С
          DEPROD COMPUTES DERIVATIVES OF A PRODUCT OF N FUNCTIONS.
С
      CALL DEPROD(A,2,NDER-1,A(1,2))
С
          NOW PUT D(2) AND DERIVATIVES IN COL. 1 OF
                                                           A a
      A(1,1)=1.+Z*TE(1)
      A(2,1) = Z
      A(3,1)=A(4,1)=A(5,1)=A(6,1)=0.
      GO TO (70,150),IQ
```

AJM FOR QE POLES С 70 CONTINUE CALL DERINV(E(1,1,2),NDER-1,E(1,1,2)) CALL DEPROD(E(1,1,2),2,NDER-1,A(1,15)) E2/E1 AND ITS DERIVATIVES ARE NOW IN COL 15 OF A. С С NOW CALCULATE AJM/EXP(-IXT) JRES2 = JRES+JRESDO 75 JX=4, JRES2,2 DO 74 I=1,NDER $A(I_{9}J_{X}) = E(I_{9}2_{9}1)$ 74 A(I,JX-1) = A(I,2)75 CONTINUE DO 90 M=1, JRES CALL DEPROD (A, JRES2, JRES-M+1, DA) DO 80 JX=M, JRES JM = JX - 5 + (M*(11 - M))/2IM= JX-M+2 DO 78 I=1.IM 78 AJM(I,K,JM) = C(I,JX+JX)80 CONTINUE IF(M .EQ. JRES) GO TO 240 JP = M+M+2IM=NDER-M DO 82 I=1,IM 82 A(I,JP) = A(I,15)90 CONTINUE GO TO 240 С AJM FOR QM POLE $150 \text{ AJM}(3,K,6) = A(1,1) \times E(1,2,2) \times (A(1,2)/E(1,1,1)) \times 2$ IF(JRES .LT. 3) GO TO 200 ZX=A(1,2)*E(1,2,1)/E(1,1,1) CALL DERINV(E(1,1,1), NDER-1, E(1,1,1)) DO 160 N=1,NDER A(N,4) = A(N,3) = A(N,2)A(N,6) = A(N,5) = E(N,1,1)A(N,8) = A(N,7) = E(N,2,2)JX=N+2IF(N •GE• NDER) GO TO 161 С STATEMENT 160 GETS AJM SUB ZERO FOR J=N+1, M=2 160 AJM(1+JX, K, N+6) = AJM(JX,K,N+ 5) *ZX161 CONTINUE GET AJM SUB ZERO AND ONE FOR J=3, M=3 С CALL DEPROD(A,8,NDER-1,A(1,1)) AJM(3,K ,10)=A(1,1)

AJM(4, K,10)=A(2,1) IF(JRES .LT. 4) GO TO 200 CALL DEPROD(E(1,1,1),2,NDER-1, A(1,5)) DO 170 N=1.NDER A(N,3) = A(N,5) $170 A(N_{9}4) = A(N_{9}2)$ DO 190 M=3, JRES JM=(M*(11-M))/2-1 Ml = M - 1175 CALL DEPROD(A,5,M-2,AJM(8-M,K,JM+1)) IF(M .EQ. 5) GO TO 200 DO 176 I=1,M1 176 AJM(I+6-M,K,JM) = C(I,3)178 MF=2*M-3 DO 180 N=1,NDER 180 A(N,MF) = E(N,2,2)190 CONTINUE 200 CONTINUE KMAX=K 240 IF(DSAV .NE. DMIN) GO TO 250 IF(K .LE. KEX) GO TO 300 COMPUTE EXP(-IXT) AND DERIVATIVES. С 250 ARG=CMPLX($0 \circ - X$) EX(1,KK) = CEXP(ARG*T(KK))DO 260 N=2,NDER 260 EX(N,KK)=ARG*EX(N-1,KK) IF (IQ .EQ. 2) KEX=K 300 SCALE=2.718281828**(J*(MW(K)1)IY)-MW(K)2)IY)+(J-1)*(MW(K)2)IW) A-MW(K,1,IW)))*SIGN С COMPUTE RESIDUES FOR I-SUB-JM FOR THIS POLE. DO 330 M=1.J JB=J-M+2IN=0IF(IQ .EQ. 1) GO TO 301 IN=JB JB=M-1 301 JM=J-5+(M*(11-M))/2IF(JB-1)302,303,304 302 R(IQ,J,M)=0. GO TO 330 303 R(IQ,J,M) = SCALE*AJM(1+IN, K, JM) *EX(1,KK)/BJM(LP(1,1),K,NP(1)) GO TO 330 304 DO 305 N=1,JB $A(N_{9}1) = AJM(N+IN_{9}K_{9}JM)$ 305 A(N,2)=EX(N,KK) С COMPUTES A-SUB-N, EQ(36). CALL DEPROD(A,2,JB-1,DA) NPB = NP(JB)

-

FACT=1. NOW COMPUTE A-HATS USING (38). AHAT(1)=DA(1)/BJM(LP(1,JB),K,NPB)DO 315 N=2,JB DA(N) = DA(N) / FACTSUM=DA(N) IM=N-1 DO 312 L=1.IM)*AHAT(L) 312 SUM=SUM-BJM(LP(N-L+1,JB),K,NPB AHAT(N)=SUM/BJM(LP(1,JB),K,NPB) 315 FACT=FACT*N R(IQ, J, M) = SCALE * AHAT(JB) 330 CONTINUE IF(IQ .EQ. 2) GO TO 350 IQ=2 IZ=1 IS=-1 KK=K+20 IW=3 IY=4 JN=J-1 NDER=JRES-1 GO TO 10 350 DSAV=DMIN RETURN END

С

SUBROUTINE DEPROD(A, JF, JN, DA) С INPUT С A(I,J)=THE (I-1)TH DERIVATIVE (I=1,JN+1) OF FUNCTION A(I,J), (J=1,JF) С OUTPUT DA(I)=THE (I-1)TH DERIVATIVE OF THE PRODUCT A(1,1)*A(1,2)*...A(1,JF) С С IMPORTANT С INPUT AND OUTPUT ARRAYS IN DEPROD MUST HAVE SAME FIRST С DIMENSION FOR USE WITH LPAINR С MAKES REPEATED USE OF LEIBNITZS RULE. COMMON/PROD/C COMPLEX A(7,15), DA(15), C(7,15) N1=JN+1DO 25 N=1,N1 25 C(N,1) = A(N,1)DO 50 M=2, JF 50 C(1,M)=C(1,M-1)*A(1,M)DO 75 M=2, JF DO 74 N=2,N1 C(N,M) = C(1,M-1) * A(N,M)FACN=1. FACL=1. DO 73 L=2.N FACN=FACN*(N-L+1) FACL=FACL*(L-1) 73 C(N,M)=C(N,M)+FACN/FACL*C(L,M-1)*A(N-L+1,M)С C(N,M)=N TH DERIVATIVE OF PRODUCT (A(1,L),L=1,M) 74 CONTINUE 75 CONTINUE DO 100 I=1,N1

DO 100 I=1,N1 100 DA(I)=C(I,JF) RETURN END

SUBROUTINE CWGW (MM, DMIN, H1, H2, ALFA, GW, Q, X,Z) С CALCULATION OF THE GROUND WAVE INPUT С С DMIN = DISTANCE BETWEEN TRANSMITTER AND RECEIVER IN KM C H1 = HEIGHT OF THE TRANSMITTER IN KM С H2 = HEIGHT OF THE RECEIVER IN KM С ALFA = EFFECTIVE EARTH RADIUS С Q = →I*V*(NORMALIZED SURFACE IMPEDANCE) X = V * T H E T AС С Z = 1.25/V**2С OUTPUT GW = THE GROUND WAVE C COMMON/WGW/QKA1,QKA2,FK,AK1,V,V2, THETA,STH COMPLEX T(200), W(200), $G_{Q}KA2$, R12, $S_{P}D_{Q}W1$, DW1, WY1, WY2, GW, S2, TSY1=QKA1*H1*1000./V Y2=QKA1*H2*1000./V COTH=COS(THETA)/STH FAC=FK*SQRT(6.283185307 *X/((6.36739E6*ALFA)**2*THETA*STH)) G₩=0• C IF THIS IS THE FIRST ENTRY COMPUTE T-SUB-S AND C COEFFICIENT OF EXP(-IXT) GO TO(60,125),MM 60 J2=1 MM=265 DO 100 J=J2,200 С FIND LOCATION OF POLE. CALL TW(J-1 , Q, T(J), W1, MW1, DW1, MD1, S,M,S,M) IF(H1.GT.0)GO TO 80 IF(H2.GT.0)GO TO 75 $W(J)=1 \bullet$ GO TO 85 С HEIGHT GAIN FUNCTIONS. 75 CALL CWAIRY(1,T(J)-Y2,WY2,MY2,S,M) W(J)=2.7182818**(MY2-MW1)*WY2/W1 GO TO 85 80 CALL CWAIRY(1,T(J)-Y1,WY1,MY1,S,M) W(J)=2.7182818**(MY1-MW1)*WY1/W1 IF(H2.GT.0)G0 TO 85 CALL CWAIRY(1,T(J)-Y2,WY2,MY2,S,M) S=2.7182818**(MY2-MW1)*WY2/W1 W(J) = W(J) * S85 W(J) = W(J) * (1 + Z * T(J)) / (T(J) - Q * Q)С COMPUTE TERM OF RESIDUE SERIES AND ADD.

	$G=(1_{\bullet}+(CMPLX(3_{\bullet},CO(H)))/(8_{\bullet}*(AKI+V*((J))))*(EXP((0_{\bullet},f^{-1}_{\bullet})*X^{+}(J)))$	
	D*(L)W=D	
	GW=GW+G	
	E(1-EQ-1)(Q) TO 100	
	I = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	
	17 (CABS(G/OW) . G1. 0.0003/ 00 10 100	
	J1=J	
	GO TO 110	
100	CONTINUE	
	J2=200	
	GO TO 165	
110 IF(J1.LE.J2)GO TO 165		
	J2=J1	
	GO TO 165	
125	DO 140 J=1.J2	
	G=(1++(CMPLX(3.,COTH))/(8.*(AK1+V*T(J))))*CEXP((0.,-1.)*X*T(J))	
	G=W(J)*G	
	GW=GW+G	
	LE(1-E0-1)60 TO 140	
	IF (CAS(G/GW) • ET• 0.00057 G0 T0 185	
140	CONTINUE	
	IF(J2.6E.200)G0 10 165	
	J2=J2+1	
	GO TO 65	
165	GW=GW*FAC *(1.,-1.)	
	RETURN	
	END	

SUBROUTINE ZEXP(A,B,X,Y,MAGTUD)

C SCALED EVALUATION OF THE EXPONENTIAL FUNCTION IN THE COMPLEX PLANE. C INPUT. C (A+IB) = THE COMPLEX EXPONENT.

C OUTPUT. C EXP(A+IB) = (X+IY)*(E**MAGTUD)

```
MAGTUD=A
SCALE=MAGTUD
E=EXPF(A-SCALE)
X=E*COSF(B)
Y=E*SINF(B)
RETURN
END
```

FUNCTION OMCOS(X)

C C		OMCOS(X) = 1 - COS(X) IS ACCURATE FOR ALL X INCLUDING X NEAR 0.
		IF(ABSF(X).GT15) GO TO 40 IF(X.EQ.0.) GO TO 50
С		IF X IS SMALL, SUM TAYLORS SERIES FOR 1-COS(X)
		S = X*X
		OMCOS = T = .5*S
		$R = 4_{\bullet}$
	10	T = -T * S / (R * (R - 1))
		OMCOS=OMCOS + T
		IF(ABS(T/OMCOS) •LE• •5E-9) GO TO 51
		R=R+2.
		$\frac{1}{2} \frac{1}{2} \frac{1}$
	40	
	50	OMCOS = 0
	50	
	דר	END

SUBROUTINE DERINV(F,N,EF)

С INPUT

- F(K) = THE (K-1)TH DERIVATIVE OF F, K=1,N+1С
- С OUTPUT
- С EF(K) = THE (K-1)TH DERIVATIVE OF 1/F,K=1,N+1
 - COMPLEX F(15), DF(15), EF(15) $DF(1) = 1 \cdot / F(1)$ DO 50 K=1.N K1=K+1 FACK=1. FACM=1. DF(K1)=0. DO 50 M=1.K FACK=FACK*(K1-M) FACM=FACM*M 50 DF(K1)=DF(K1)-(FACK/FACM*F(M+1)*DF(K1-M))/F(1) M=N+1 DO 60 K=1,M 60 EF(K) = DF(K)RETURN END

SUBROUTINE TW(I, Q, T, WI, MWI, DW1, MD1, W2, MW2, DW2, MD2) С T IS THE I-TH ROOT OF W-SUB-ONE-PRIME - Q*W-SUB-1 =0.(W IS THE AIRY FUNCTION) С THE ROOTS ARE COUNTED IN ORDER OF INCREASING MAGNITUDE. C С W-SUB-ONE(T) = EXP(MW1)*W1, W-SUB-ONE-PRIME = EXP(MD1)*DW1, С W-SUB-TWO = EXP(MW2)*W2, ETC.С DIMENSION TZERO(11), TINFIN(11) COMPLEX Q,W1,DW1,W2,DW2, PH, A ,T С W-SUB-ONE-PRIME(TZERO(I)) =0. DATA (TZERO= 1.018793, 3.2481975, 4.8200992, 6.1633074, 1 7.3721773, 8.4884868, 9.5354490, 10.52766, 11.475057, 12.384788, 2 13.262219) С W-SUB-ONE(TINFIN(I)) =0. DATA (TINFIN = 2.3380997, 4.0879494, 5.5205598, 6.7867081, 1 7.9441336, 9.0226508, 10.040174, 11.008524, 11.936016, 12.828777, 2 13.691489) DATA (PH = (0.5, -0.8660254)), (CON= 1.17809724) С IF(REAL(Q)**2 + AIMAG(Q)**2 .GT. 1.) GO TO 50 IF(I .GT. 10) GO TO 10 TZ = TZERO(I+1)GO TO 20 10 YS = ((4*I+1)*CON)**2TZ = CUBERTF(YS) *(1.-.1458333/YS) 20 T = TZ*PHT IS NOW SOLUTION FOR Q =0. THE NEXT STEP IS THE FIRST NEWTON ITERATION. С T = T + Q/TGO TO 100 50 IF(I .GT. 10) GO TO 60 TZ = TINFIN(I+1)GO TO 70 60 YS = ((4*I+3) *CON)**2TZ = CUBERTF(YS) * (1 + 1041667/YS)70 T = TZ*PHT IS SOLUTION FOR Q=INFINITY. NEXT STEP IS THE FIRST NEWTON ITERATION. С $T = T + 1 \cdot / Q$ 100 K=0 NOW, USE NEWTONS ITERATION TO CONVERGE ON SOLUTION C С CWAIRY COMPUTES W(T) AND W PRIME (T) 101 CALL CWAIRY(1,T,W1,MW1,W2, MW2) CALL CWAIRY(2,T,DW1,MD1,DW2,MD2) A=(2.718281828**(MD1-MW1))*DW1/W1 A = (A-Q)/(T - A*Q)

```
T = T-A
K=K+1
IF(K .GT. 15) GO TO 150
IF(CABS(A/T) .GT. 0.5E-6) GO TO 101
RETURN
150 PRINT 155 , I, T, A
155 FORMAT(* FAILED TO CONVERGE ON T(*, I2, *), T = *,
1 C(E14.6,E14.6),* LAST CORRECTION =*, C(E14.6,E14.6))
RETURN
END
```

```
SUBROUTINE GUDFAZ(K, C, FAZ, N)
С
С
              SMOOTHS PHASE OF IONO REFLECTION COEFFICIENTS FOR ANIHOP
              K=1,2,3,4 FOR TEE, TEM, TME, TMM, RESPECTIVELY
C=COS(PHI), ARRANGED IN ORDER OF INCREASING PHI
                             (=ANGLE OF INCIDENCE)
              FAZ=PHASE OF REFLECTION COEFFICIENT, ARRANGED IN
                             SAME ORDER AS C.
              N=NUMBER OF DATA POINTS
С
      DIMENSION C(20), FAZ(4,20)
      DATA (PI=3.141592653)
      C(N+1)=0.
      FAZ(K,N+1)=PI
    3 IF(ABS(PI-FAZ(K,N)) .LE. PI) GO TO 5
      FAZ(K,N)=FAZ(K,N)-SIGNF(2.*PI,FAZ(K,N))
      GO TO 3
    5 DO 10 I=2,N
      J=N+2-I
      TEST=PI+(FAZ(K,J+1)-FAZ(K,J))*C(J-1)/(C(J+1)-C(J))
    7 TRY=TEST-FAZ(K,J-1)
      IF(ABS(TRY) .LE. PI) GO TO 8
      FAZ(K,J-1)=FAZ(K,J-1)+SIGNF(2,*PI,TRY)
      GO TO 7
    8 TRY = FAZ(K,J-1) - FAZ(K,J)
      IF(ABS(TRY) .LT. 2.*PI) GO TO 10
      FAZ(K, J-1) = FAZ(K, J-1) - SIGNF(2*PI, TRY)
      GO TO 8
   10 CONTINUE
      RETURN
      END
```

SUBROUTINE CWAIRY(KK, T, F1, M1, F2, M2)

С CALCULATION OF THE W(T) AIRY FUNCTIONS С INPUT KK=1, W(T) OF KIND 1 AND W(T) OF KIND 2 ARE COMPUTED С С KK=2, THE DERIVATIVE OF W(T) OF KIND 1 AND THE DERIVATIVE OF С W(T) OF KIND 2 ARE COMPUTED С T = THE COMPLEX ARGUMENT С OUTPUT F1*(E**M1) = W(T) OF KIND 1 OR THE DERIVATIVE OF W(T) OF KIND 1 С С AS INDICATED BY KK F2*(E**M2) = W(T) OF KIND 2 OR THE DERIVATIVE OF W(T) OF KIND 2 С С AS INDICATED BY KK С NOTE. F1 AND F2 ARE COMPLEX, E=2.718281828..., AND M1 AND M2 ARE C **EXPONENTS** COMMON/MEXP/M COMPLEX F1,F2,WI1,WI2,WI1P,WI2P,T GO TO(100,200),KK 100 F2=WI1(T) M2=M F1=WI2(T)M1=M GO TO 300 200 F2=WI1P(T) M2=M F1=WI2P(T)M1=M 300 F1=1.7724538509*(0.,-1.)*F1 F2=1.7724538509*(0.,+1.)*F2 RETURN END

COMPLEX FUNCTION AIRY(ZZ)

C
С
C
С

SUBROUTINE TO CALCULATE AIRY FUNCTIONS. USES TAYLORS EXPANSIONS AROUND VARIOUS COMPLEX CONSTANTS FOR SMALL T AND ASSYMPTOTIC SERIES FOR LARGE T. WRITTEN BY DR. GEORGE HUFFORD, ITS, BOULDER, COLORADO 80302.

COMPLEX ZZ COMMON/MEXP/M

С

CUMPLEX 2:1:14:347:00:21:02:04:20:32:00:30:192:49:3 DIMENSION X(2):X1(2):X1(2):SECUVALENCE (X:2):X(1:21):(XT,ZT) DATA (LG=3):(21:(0::0.)):(A:(0::3502805389;0.)) DATA (LG=3):(21:(0::0.)):(A:(0::3502805389;0.)) DATA (LG=3):(21:(0::0.)):(A:(0::3502805389;0.)) DATA (LG=3):(21:(0::0.)):(A:(0::3502805389;0.)) DATA (LG=3):(21:(0::0.)):(A:(0::3502805389;0.)) DATA (LG=3):(21:(0::0.)):(A:(0::0.000000000000000000000000000000				
DATA (LGG3), (21-(0.,0.)), (A=(0.35502805389,0.)) DATA (LGG3), (21-(0.,0.)), (A=(0.35502805389,0.)) DIMENSION AV(70) \$ COMPLEX AV \$ DATA (AV= AV 0 X (-3.2914517363E-001, 0.0000000000E+0001, AV 2 X (2.4122262158E+000, 1.4774589547E+000), AV 3 X (2.4122262158E+000, 6.9865124448E-001), AV 4 (3.635531189E+001, -3.4600759696E+0001, AV 5 X (2.4122262158E+000, 6.9865124448E-001), AV 4 (3.635531189E+001, -3.4600759696E+0001, AV 5 X (2.4429739613E+002, -3.3690890250E+002), AV 6 (-7.265532950E-002, 0.0000000000E+0001, AV 7 X (-5.4818219290E-001, -1.9207365909E+000), AV 7 X (-5.4818219290E-001, -1.9207365909E+0001, AV 8 X (-1.3383395342E+001, -1.6022590802E+001), AV 9 (-2.2967795901E+002, -3.2072452637E+001, AV 10 X (-1.8040780476E+003, 2.1917675036E+003), AV 11 X (-1.8040780476E+003, 2.1917675036E+003), AV 11 X (-4.0453339302E+000, 1.000000000E+0001, AV 12 X (-1.3491836060E+000, 8.4969077213E-0011, AV 15 X (9.8925349347E+002, 1.3905286008E+002), AV 16 X (-1.1367403459E-001, 9.8813517650E+001), AV 15 X (9.8925349347E+002, 1.3905286008E+002), AV 16 X (-2.1857403459E-001, 9.7809094170E-001), AV 16 X (-2.1857403459E-001, 9.7809094170E-001), AV 16 X (-2.601633691E+002, -2.7203014866E+000), AV 17 X (-1.1857403459E-001, -0.0000000000E+0001, AV 18 X (-6.7139789190E+001, -3.0904538708E+002], AV 22 X (-2.973934552E+002, -2.5743310394E+002], AV 22 X (-2.80163369E+001, -2.974310394E+000], AV 22 X (-2.80163369E+001, -2.974310394E+000], AV 22 X (-2.80163369E+001, -2.974310394E+000], AV 22 X (-2.839999360E-001, 0.0000000000E+000], AV 22 X (-2.993394552E+002, -2.5743310394E+000], AV 22 X (-2.839999360E-001, 0.000000000E+000], AV 23 X (9.2407365385E-001, 0.9000000000E+000], AV 25 X (-2.2839999360E-001, 0.0000000000E+000], AV 25 X (-2.2839999360E-001, 0.000000000E+000], AV 25 X (-2.2839999360E-001, 0.000000000E+000], AV 25 X (-2.283999360E-001, 0.0000000000E+000], AV 25 X (-2.283999360E-001, 0.0000000000E+000], AV 35 X (-2.283999360E-001, -1.99064812312E+001], AV 30 X (-2.283999360E-001, -1.9076411		CUMPLEX Z9ZI9A9AP9U9ZI9ZA9ZB9ZE9ZR9BU9BI9BZ9B3		
DATA (197-10-25881940379.0.1) DIMENSION AV(70) S COMPLEX AV \$ DATA (AV= AV 0 X (-3.2914517362-001, 0.000000000E+000), AV 1 X (-2.6780035625E+000, 1.4774589547E+000), AV 2 X (3.5076100903E-001, 0.000000000E+000), AV 3 X (2.4122262158E+000, 6.9865124448E-001), AV 4 X (3.635531189E+001,-3.4600959696E+0001, AV 5 X (3.64267328290E-002, 0.000000000000000000000000000000000		DIMENSION ACCIPATIC/PATIC/ \mathcal{P} EQUIVALENCE (APC) $(ATPCI)$		
DIMENSION AV (70) 5 COMPLEX AV 5 DATA (AV= AV 0 X (-3.2914517363E-001, 0.0000000000E+000), AV 1 (-2.6780035625E+000, 1.4774589547E+000), AV 2 X (3.5076100903E-001, 0.000000000E+000), AV 3 X (2.4122262158E+000, 6.9865124448E-001, AV 4 (3.635531189E+001,-3.460095965E+002), AV 6 X (-7.0265532950E-002, 0.000000000E+000), AV 7 X (-5.4818219290E-001,-1.9207365909E+000), AV 8 X (-1.3383395342E+001,-1.9207365909E+000), AV 8 X (-1.3383395342E+001,-1.6022590802E+001), AV 9 V (-2.2967795901E+002,-3.207245637E+001), AV 10 X (-1.36040780476E+003, 2.1917675036E+003), AV 11 X (-3.7881429368E-001, 0.00000000E+000), AV 12 X (-1.349183660E+000, 8.4969077213E-001), AV 13 X (-6.0453339320E+000, 1.0623175540E+001), AV 15 X (-3.169621695E+001, 9.8813517650E+001), AV 15 X (9.8925349347E+002, 1.3905286008E+002), AV 16 X (2.2740742820E-001, 0.000000000E+000), AV 15 X (2.2740742820E-001, 9.780994170E-001), AV 16 X (2.2740742820E-001, 0.000000000E+000), AV 17 X (7.1857403459E-001, 9.780994170E-001), AV 16 X (2.2740742820E-001, 0.000000000E+000), AV 17 X (1.857403459E-001, 9.780994170E-001), AV 18 X (-6.0621088063E+000, 2.7203014866E+002), AV 16 X (2.2740742820E-001, 0.000000000E+000), AV 17 X (7.1857403459E-001, 9.780994170E-001), AV 20 X (-6.7139789190E+001,-2.0961355813E+001), AV 20 X (-6.7139789190E+001,-2.0961355813E+001), AV 20 X (-6.7139789190E+001,-2.0961355813E+001), AV 21 X (-2.8001653691E+003, 4.6649365984E+002), AV 21 X (-2.8001653691E+003, 4.6649365984E+002), AV 21 X (-2.8001653691E+001,-2.5743310394E+0001, AV 25 X (9.2407365385E-001,-1.910656052E-001), AV 25 X (-8.1787377840E+001,-2.5743310394E+0001, AV 25 X (-8.178377840E+001,-2.5743310394E+0001, AV 25 X (-8.178377840E+001,-1.292420190E+001), AV 25 X (-7.184363282E+000,-1.92942179258E+002], AV 26 X (-3.502805389E-001,-1.910656052E-001), AV 26 X (-4.2009351585E+000,-1.92942179258E+002], AV 26 X (-4.2009351585E+000,-1.949151191E+000), AV 35 X (-4.2009351585E+000,-1.94872785E-001), AV 36 X (-4.203351585E+000,-1.94872785E-001), AV 37 X (-1.4509641493E-001,-0.0000000000E+000), A		DATA (LQ-J) = (2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		
C1-3.2914517363E-001, 0.00000000E+0001, AV X (-2.6780035625E+000, 1.4774589547E+000), AV X (2.4122262158E+000, 6.9865124448E-001), AV X (2.4122262158E+000, 6.9865124448E-001), AV X (3.635531189E+001,-3.46009595656+000), AV X (3.6449739613E+002,-3.3690890256E+002), AV X (-5.4818219290E-001,-1.9207365909E+000), AV X (-5.4818219290E-001,-1.6022590802E+001), AV X (-1.3383395342E+001,-1.6022590802E+001), AV X (-1.4040780476E+003, 2.1917675036E+003), AV X (-1.349183606E+000, 8.4969077213E-001), AV X (-1.349183606E+001, 0.000000000E+000), AV X (-3.61621695E+001, 9.8813517650E+001), AV X (-3.6108063E+002, -2.906135513E+001), AV X (-3.6307084828E+001, -2.096135513516-001), AV X (-3.6307084828E+001, -2.0961355135135101), AV X (-6.7139789190E+001, -3.0904638708E+002), AV X (-6.7139789190E+001, -3.0904638708E+002), AV X (-6.7139789190E+001, -3.0904638708E+002), </td <td></td> <td>DATA $(AF - (-0.230019403194001))$ DIMENSION AV(70) & COMDEV AV & DATA (AV-</td> <td>A 1 7</td> <td>0</td>		DATA $(AF - (-0.230019403194001))$ DIMENSION AV(70) & COMDEV AV & DATA (AV-	A 1 7	0
X (-2.6780035625E+000) 1.4774589547E+000), AV X (3.5076100903E-001, 0.00000000E+000), AV X (3.6076100903E-001, 0.9005124448E-001), AV X (3.3635531189E+001,-3.4600959696E+000), AV 4 X (3.3635531189E+001,-3.4600959696E+000), AV 4 X (3.4449739613E+001,-1.9207365909E+000), AV 7 X (-5.4818219290E-001,-1.9207365909E+000), AV 8 X (-1.3383395342E+001,-1.6022590802E+001), AV 9 X (-2.2967795901E+002,-3.2072452637E+001), AV 10 X (-1.8040780476E+003, 2.1917675036E+003), AV 11 X (-1.8040780476E+003, 2.1917675036E+003), AV 12 X (-1.3491836060E+000, 8.4969077213E-001), AV 13 X (-6.6453339320E+000, 1.0623175540E+001), AV 14 X (-1.857403458E+001, 9.83157650E+001), AV 16 X (-6.621088063E+000, 2.7203014866E+000), AV 17 X (-6.67139789190E+001, -2.9961355813E+001), AV 20	v	$\frac{1}{2} = \frac{1}{2} = \frac{1}$		ט ו
X 1 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 *	\hat{v}	(-2) = 2.57490735625=1000, 1.6776589567=1000)	A.V.	・ う
X 12.4122262188±001, 6.9865124448±001, AV X (3.3635531189±001,-3.4600959696±002), AV X (3.3635531189±001,-3.4600959696±002), AV X (-7.0265532950±002, -3.369089250±002), AV X (-7.0265532950±002, -3.369089250±001), AV X (-5.4818219290±001,-1.6022590802±001), AV X (-5.4818219290±001,-1.6022590802±001), AV X (-1.8040780476±003, 2.1917675036±003), AV X (-1.8040780476±003, 2.1917675036±003), AV X (-1.3491836060±000, 8.4969077213±001), AV X (-6.0453339320±000, 1.0623175540±001), AV X (-6.0453339320±001, 0.000000000±0001), AV X (9.8925349347±001, 9.8813517550±001), AV X (9.80253495±001, 0.00000000±0001), AV X (5.0621088063±000, 2.7203014866±000), AV X (5.3556088329±001, -2.09961355813±001), AV X (-6.0621088063±000, 2.7203014866±002), AV X (-2.8001653691±003, 4.6649365984±002), AV X (-2.8001653691±001, -3.0904638708±0002), AV	Ŷ		Δv	2
X 1 3.3635531189E+001,-3.4600959696+000), AV X 1 3.4449739613E+002,-3.3690890250E+002), AV X (-5.4818219290E-001,-1.9207365909E+000), AV X (-5.4818219290E-001,-1.9207365909E+000), AV X (-5.4818219290E-001,-1.9207365909E+000), AV X (-1.3383395342E+001,-1.6022590802E+001), AV X (-1.38040780476E+003, 2.1917675036E+003), AV X (-1.38040780476E+000, 2.32072452637E+001), AV X (-1.349183606E+000, 8.4969077213E-001), AV X (-6.0453339320E+000, 1.0623175540E+001), AV X (-6.0453339320E+001, 9.8813517650E+001), AV X (-6.0452088063E+002, 1.3905286008E+002), AV X (-6.0452088063E+001, 2.720314866E+000), AV X (-6.0713978190E+001, -2.096135813E+001), AV X (-3.307684828E+001, -2.096135813E+001), AV X (-3.4307684028E+001, -2.096135813E+001), AV X (-3.4307684828E+001, -2.096135813E+001), AV X (-3.4307684828E+001, -2.974310394E+002), AV X (-3.2307684828E+000	x	(2,412262158E+001) 6 9865124448E=001)	Δν	4
X (3.4449739613E+002,-3.369080250E+002), AV 6 X (-7.0265532950E-002, 0.000000000E+000), AV 7 (-5.481821920E-001,-1.9207365909E+000), AV 8 X (-1.3383395342E+001,-1.9207365909E+001), AV 9 X (-2.2967795901E+002,-3.2072452637E+001), AV 10 X (-1.8040780476E+003, 2.1917675036E+003), AV 11 X (-3.7881429368E-001, 0.000000000E+000), AV 12 X (-1.3491836060E+000, 8.4969077213E-001), AV 13 X (-6.045333920E+000, 1.0623175540E+001), AV 15 X (9.8925349347E+002, 1.3905286008E+002), AV 16 X (2.2740742820E-001, 0.000000000E+000), AV 15 X (9.8925349347E+002, 1.3905286008E+002), AV 16 X (2.2740742820E-001, 0.000000000E+000), AV 17 X (7.1857403459E-001, 9.7809094170E-001), AV 18 X (6.0621088063E+000, 2.7203014866E+000), AV 19 X (3.6307084828E+001,-2.0961355813E+001), AV 20 X (-6.7139789190E+001,-3.0904638708E+002), AV 21 X (-2.8001653691E+003, 4.6649365984E+002), AV 21 X (-2.8001653691E+003, 4.6649365984E+002), AV 22 X (5.355608329E-001, 0.000000000E+000), AV 23 X (9.2407365385E-001,-1.9106560052E-001), AV 24 X (1.8716185961E+000,-2.5743310394E+000), AV 25 X (-7.2188436328E+000,-2.5743310394E+000), AV 25 X (-7.2188436328E+000,-2.5743310394E+000), AV 25 X (-7.2188436328E+000,-2.5743310394E+000), AV 25 X (-7.2188436328E+000,-2.5743310394E+000), AV 25 X (-7.2188436328E+000,-3.8845385098E-001), AV 26 X (1.8716185961E+000,-3.8845385098E-001), AV 26 X (1.8716185961E+000,-3.8845385098E-001), AV 26 X (1.8716185961E+000,-3.8845385098E-001), AV 26 X (1.8716185961E+000,-2.5743310394E+000), AV 27 X (2.9933948552E+002, 5.6922179258E+002), AV 28 X (1.522839999360E-001,-1.0976411220E+000), AV 27 X (2.9933948552E+002, 5.6922179258E+002), AV 30 X (-1.858832892E+000, 1.9609125132+001), AV 30 X (-1.858832892E+000, 1.96091251325001), AV 30 X (-1.858832892E+000, 1.96091251325001), AV 30 X (-1.858832892E+000, 1.9609125132092E+001), AV 30 X (1.0129121011E+002,-7.5951233292E+001), AV 31 X (-1.4509641493E-001, -0.000000000E+000), AV 31 X (-1.4509641493E-001, -0.002000000E+000), AV 37 X (-1.4509641493E-001, -0.0328015748E+00	x	(3.3635531189E+001,-3.4600959696E+000),	ÂV	5
X (-7.0265532950E-002, 0.000000000E+000), AV 7 X (-5.4818219290E-001,-1.9207365909E+000), AV 8 X (-1.3383395342E+001,-1.6022590802E+001), AV 9 (-2.2967795901E+002,-3.2072452637E+001), AV 10 X (-1.8040780476E+003, 2.1917675036E+003), AV 11 X (-3.7881429368E-001, 0.000000000E+000), AV 12 X (-1.3491836060E+000, 8.4969077213E-001), AV 13 X (-6.0453339320E+000, 1.6623175540E+001), AV 14 X (3.1169621695E+001, 9.8813517650E+001), AV 15 X (-6.0453339320E+000, 1.6623175540E+001), AV 16 X (2.2740742820E-001, 0.000000000E+000), AV 16 X (2.2740742820E-001, 0.0000000000E+000), AV 17 X (7.1857403459E-001, 9.7809094170E-001), AV 18 X (6.0621088063E+000, 2.7203014866E+000), AV 19 X (3.6307084828E+001,-2.0961355813E+001), AV 20 X (-6.7139789190E+001,-3.0904638708E+002), AV 21 X (-2.8001653691E+003, 4.6649365984E+002), AV 21 X (-2.8001653691E+003, 4.6649365984E+002), AV 22 X (5.3556088329E-001, 0.000000000E+000), AV 23 X (9.2407365385E-001,-1.99106560052E-001), AV 25 X (7.2188436328E+001,-2.5743310394E+000), AV 25 X (7.2188436328E+001,-2.5743310394E+000), AV 25 X (7.2188436328E+001,-2.5743310394E+000), AV 25 X (7.817377840E+001, 3.2087013839E+001), AV 26 X (-8.1787377840E+001, 3.2087013839E+001), AV 27 X (2.993394852E+002, 5.6922179258E+002), AV 28 X (3.1203438104E-001,-1.976411220E+000), AV 30 X (-5.28399993050E-001,-1.0976411220E+000), AV 30 X (-5.2839999305E-001,-1.0976411220E+000), AV 31 X (-4.2009351585E+000, 1.9400912513E+001), AV 36 X (1.0129121011E+002,-7.5951233292E+001), AV 36 X (1.0129121011E+002,-7.5951233292E+001), AV 36 X (1.32618478398E-002,-1.7084872785E-001), AV 36 X (1.32618478398E-002,-1.7084872785E-001), AV 37 X (1.4509641493E-001,-1.89067646330E-002), AV 37 X (1.4509641493E-001,-1.89067646330E-002), AV 37 X (-1.4509641493E-001,-1.89067646330E-002), AV 37 X (-1.4509641493E-001,-1.89067646330E-002), AV 37 X (-1.4509641493E-001,-1.890676	X	(3.4449739613E+002,-3.3690890250E+002),	AV	6
X (-5.4818219290E-001,-1.9207365909E+000), AV 8 X (-1.3383395342E+001,-1.6022590802E+001), AV 9 X (-2.2967795901E+002,-3.2072452637E+001), AV 10 X (-1.8040780476E+003, 2.1917675036E+003), AV 11 X (-3.7881429368E-001, 0.000000000E+000), AV 12 X (-1.3491836060E+000, 8.4969077213E-001), AV 13 X (-6.0453339320E+000, 1.0623175540E+001), AV 14 X (3.1169621695E+001, 9.8813517650E+001), AV 15 X (9.8925349347E+002, 1.390528608E+002), AV 16 X (7.1857403459E-001, 9.7809094170E-001), AV 17 X (7.667139789190E+001,-2.0961355813E+001), AV 20 X (-6.7139789190E+001,-3.0904638708E+002), AV 21 X (-6.7139789190E+001,-3.0904638708E+002), AV 22 X (1.85756088329E-001,0.000000000E+000), AV 22 X (-6.7139789190E+001,-2.5743310394E+000), AV 22 X (-7.2186436328E+000,-2.5742310394E+000), AV 22	X	(-7.0265532950E-002, 0.000000000E+000),	AV	7
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Х	<pre>(-5.4818219290E-001,-1.9207365909E+000);</pre>	AV	8
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Х	<pre>((-1.3383395342E+0011.6022590802E+001).</pre>	AV	9
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Х	<pre>(-2.2967795901E+002,-3.2072452637E+001),</pre>	AV	10
X (-3.7881429368E-001, 0.00000000E+000), AV 12 X (-1.3491836660E+000, 8.4969077213E-001), AV 13 X (-6.0453339320E+000, 1.0623175540E+001), AV 14 X (3.1169621695E+001, 9.8813517650E+001), AV 15 X (9.8925349347E+002, 1.3905286008E+002), AV 16 X (2.2740742820E-001, 0.000000000E+000), AV 17 X (7.1857403459E-001, 9.7809094170E-001), AV 18 X (6.0621088063E+001, -2.0961355813E+001), AV 19 X (3.6307084828E+001, -2.0961355813E+001), AV 20 X (-2.8001653691E+003, 4.6649365984E+002), AV 21 X (-2.8001653691E+003, 4.6649365984E+002), AV 23 X (9.2407365385E-001, -1.09004038708E+000), AV 23 X (1.8716185961E+000, -2.5743310394E+000), AV 25 X (1.8716185961E+000, -2.5743310394E+000), AV 27 X (2.9933948552E+002, 5.6922179258E+002), AV 28 X (3.5502805389E-001, 0.000000000E+000), AV 29 <	Х	<pre>(-1.8040780476E+003, 2.1917675036E+003),</pre>	AV	11
X (-1.3491836060E+000, 8.4969077213E-001), AV 13 X (-6.0453339320E+000, 1.0623175540E+001), AV 14 X (3.1169621695E+001, 9.8813517650E+001), AV 15 X (9.8925349347E+002, 1.3905286008E+002), AV 16 X (2.2740742820E-001, 0.0000000000E+000), AV 17 X (7.1857403459E-001, 9.7809094170E-001), AV 18 X (6.0621088063E+000, 2.7203014866E+000), AV 19 X (3.6307084828E+001, -2.0961355813E+001), AV 20 X (-6.7139789190E+001, -3.0904638708E+002), AV 21 X (-2.8001653691E+003, 4.66649365984E+002), AV 22 X (5.3556088329E-001, 0.00000000E+000), AV 24 X (1.8716185961E+000, -2.5743310394E+000), AV 25 X (-7.2188436328E+000, -1.2924200190E+001), AV 26 X (3.5502805389E-001, -0.00000000E+000), AV 27 X (2.9933948552E+002, 5.6922179258E+002), AV 28 X (3.5202805389E-001, -0.097641120E+000), AV 29 <	Х	<pre>(-3.7881429368E-001, 0.000000000E+000);</pre>	AV	12
X (-6.0453339320E+000, 1.0623175540E+001), AV 14 X (3.1169621695E+001, 9.8813517650E+001), AV 15 X (9.8925349347E+002, 1.3905286008E+002), AV 16 X (2.2740742820E-001, 0.00000000E+000), AV 17 X (7.1857403459E-001, 9.7809094170E-001), AV 18 X (6.0621088063E+000, 2.7203014866E+000), AV 19 X (3.6307084828E+001,-2.0961355813E+001), AV 21 X (-6.7139789190E+001,-3.0904638708E+002), AV 21 X (-6.7139789190E+001,-3.0904638708E+002), AV 23 X (9.2407365385E-001,-1.9106560052E-001), AV 23 X (9.2407365385E-001,-1.99106560052E-001), AV 25 X (1.8716185961E+000,-2.5743310394E+000), AV 26 X (1.8716185961E+000,-2.574331039E+001), AV 27 X (2.993394852E+002, 5.6922179258E+002), AV 28 X (3.5502805389E-001, 0.000000000E+000), AV 28 X (1.293399360E-001,-1.0976411220E+000), AV 30	Х	(-1.3491836060E+000, 8.4969077213E-001),	AV	13
X (3.1169621695E+001, 9.8813517650E+001), AV 15 X (9.8925349347E+002, 1.3905286008E+002), AV 16 X (2.2740742820E-001, 0.00000000E+000), AV 17 X (7.1857403459E-001, 9.7809094170E-001), AV 18 X (6.0621088063E+000, 2.7203014866E+000), AV 19 X (3.6307084828E+001, -2.0961355813E+001), AV 20 X (-2.8001653691E+003, 4.6649365984E+002), AV 21 X (-2.8001653691E+003, 4.6649365984E+002), AV 23 X (9.2407365385E-001, -1.9106560052E-001), AV 23 X (-2.818436328E+000, -1.2924200190E+001), AV 25 X (-7.2188436328E+000, -1.2924200190E+001), AV 26 X (-8.1787377840E+001, 3.2037013839E+001), AV 27 X (2.9933948552E+002, 5.6922179258E+002), AV 28 X (-5.2839999360E-001, -1.0976411220E+000), AV 29 X (7.1858832892E+000, 1.960912513E+001), AV 33 X (-1.8503289E+000, 1.9600912513E+001), AV <	Х	<pre>(-6.0453339320E+000, 1.0623175540E+001),</pre>	AV	14
X (9.8925349347E+002, 1.3905286008E+002), AV 16 X (2.2740742820E-001, 0.00000000E+000), AV 17 X (7.1857403459E-001, 9.7809094170E-001), AV 18 X (6.0621088063E+000, 2.7203014866E+000), AV 19 X (3.6307084828E+001,-2.0961355813E+001), AV 20 X (-6.7139789190E+001,-3.0904638708E+002), AV 21 X (-2.8001653691E+003, 4.6649365984E+002), AV 22 X (5.3556088329E-001, 0.00000000E+000), AV 23 X (9.2407365385E-001,-1.9106560052E-001), AV 24 X (1.8716185961E+000,-2.5743310394E+000), AV 25 X (-7.2188436328E+000,-1.2924200190E+001), AV 26 X (1.8717377840E+001, 3.2087013839E+001), AV 27 X (2.9933948552E+002, 5.6922179258E+002), AV 28 X (3.1203438104E-001,-3.8845385098E-001), AV 29 X (7.1858832892E+000, 1.9960912513E+001), AV 32 X (7.1858832892E+000, 1.960912513E+001), AV 32	Х	<pre>(3.1169621695E+001, 9.8813517650E+001),</pre>	AV	15
X (2.2740742820E-001, 0.00000000E+000), AV 17 X (7.1857403459E-001, 9.7809094170E-001), AV 18 X (6.0621088063E+000, 2.7203014866E+000), AV 19 X (3.6307084828E+001, -2.0961355813E+001), AV 20 X (-6.7139789190E+001, -3.0904638708E+002), AV 21 X (-2.8001653691E+003, 4.6649365984E+002), AV 22 X (5.3556088329E-001, 0.00000000E+000), AV 23 X (9.2407365385E-001, -1.9106560052E-001), AV 23 X (1.8716185961E+000, -2.5743310394E+000), AV 25 X (-7.2188436328E+000, -1.2924200190E+001), AV 26 X (-7.2183436328E+001, 3.2087013839E+001), AV 27 X (2.9933948552E+002, 5.6922179258E+002), AV 28 X (3.5502805389E-001, 0.000000000E+000), AV 29 X (3.203438104E-001, -3.8845385098E-001), AV 29 X (-4.2009351585E+000, 1.940151191E+000), AV 32 X (-1.8158832892E+000, 1.96009125132+001), AV 32 <td>Х</td> <td><pre>(9.8925349347E+002, 1.3905286008E+002),</pre></td> <td>AV</td> <td>16</td>	Х	<pre>(9.8925349347E+002, 1.3905286008E+002),</pre>	AV	16
X (7.1857403459E-001, 9.7809094170E-001), AV 18 X (6.0621088063E+000, 2.7203014866E+000), AV 19 X (3.6307084828E+001, -2.0961355813E+001), AV 20 X (-6.7139789190E+001, -3.0904638708E+002), AV 21 X (-6.7139789190E+001, -3.0904638708E+002), AV 21 X (-6.7139789190E+001, -3.0904638708E+002), AV 22 X (-6.7139789190E+001, -3.0904638708E+002), AV 22 X (-6.7139789190E+001, -3.0904638708E+002), AV 22 X (-6.7139789190E+001, -1.9106560052E-001), AV 23 X (9.2407365385E-001, -1.9106560052E-001), AV 25 X (-7.2188436328E+000, -1.2924200190E+001), AV 26 X (-7.2188436328E+000, -1.2924200190E+001), AV 27 X (-8.1787377840E+001, 3.2087013839E+001), AV 27 X (2.9933948552E+002, 5.6922179258E+002), AV 28 X (-8.1203438104E-001, -3.8845385098E-001), AV 30 X (-4.2009351585E+000, 1.1940151191E+000), AV <t< td=""><td>Х</td><td><pre>(2.2740742820E-001, 0.000000000E+000);</pre></td><td>AV</td><td>17</td></t<>	Х	<pre>(2.2740742820E-001, 0.000000000E+000);</pre>	AV	17
X (6.0621088063E+000, 2.7203014866E+000), AV 19 X (3.6307084828E+001,-2.0961355813E+001), AV 20 X (-6.7139789190E+001,-3.0904638708E+002), AV 21 X (-2.8001653691E+003, 4.6649365984E+002), AV 22 X (5.3556088329E-001, 0.00000000E+000), AV 23 X (9.2407365385E-001, -1.9106560052E-001), AV 24 X (1.8716185961E+000, -2.5743310394E+000), AV 25 X (-7.2188436328E+000, -1.2924200190E+001), AV 26 X (2.9933948552E+002, 5.6922179258E+002), AV 28 X (3.5502805389E-001, 0.0000000000E+000), AV 28 X (3.203438104E-001, -3.8845385098E-001), AV 28 X (-4.2009351585E+000, 1.1940151191E+000), AV 30 X (-4.2009351585E+000, 1.9600912513E+001), AV 32 X (1.0129121011E+002, -7.5951233292E+001), AV 33 X (1.32529241631E-001, 0.000000000E+000), AV 35 X (-3.4215381085E-001, -8.9067646330E-002), AV <	Х	(7.1857403459E-001, 9.7809094170E-001),	AV	18
X (3.6307084828E+001,-2.0961355813E+001), AV 20 X (-6.7139789190E+001,-3.0904638708E+002), AV 21 X (-2.8001653691E+003, 4.6649365984E+002), AV 22 X (5.3556088329E-001, 0.00000000E+000), AV 23 X (9.2407365385E-001,-1.9106560052E-001), AV 24 X (1.8716185961E+000,-2.5743310394E+000), AV 25 X (-7.2188436328E+000,-1.2924200190E+001), AV 26 X (-8.1787377840E+001, 3.2087013839E+001), AV 27 X (2.9933948552E+002, 5.6922179258E+002), AV 28 X (3.5502805389E-001, 0.0000000000000000000000), AV 29 X (3.1203438104E-001,-3.8845385098E-001), AV 29 X (-4.2009351585E+000, 1.1940151191E+000), AV 31 X (-1.858832892E+000, 1.9600912513E+001), AV 32 X (1.0129121011E+002,-7.5951233292E+001), AV 33 X (1.3529241631E-001, 0.0000000000E+000), AV 35 X (1.3529241631E-001, 0.0000000000E+000), AV 35	Х	(6.0621088063E+000, 2.7203014866E+000),	AV	19
X (-6.7139789190E+001,-3.0904638708E+002), AV 21 X (-2.8001653691E+003, 4.6649365984E+002), AV 22 X (5.3556088329E-001, 0.000000000E+000), AV 23 X (9.2407365385E-001,-1.9106560052E-001), AV 24 X (1.8716185961E+000,-2.5743310394E+000), AV 25 X (-7.2188436328E+000,-1.2924200190E+001), AV 26 X (-8.1787377840E+001, 3.2087013839E+001), AV 27 X (2.9933948552E+002, 5.6922179258E+002), AV 28 X (3.5502805389E-001, 0.000000000E+000), AV 29 X (3.1203438104E-001,-3.8845385098E-001), AV 29 X (-4.2009351585E+000, 1.1940151191E+000), AV 31 X (-4.2009351585E+000, 1.9600912513E+001), AV 32 X (1.0129121011E+002,-7.5951233292E+001), AV 33 X (1.3529241631E-001, 0.000000000E+000), AV 35 X (3.2618478398E-002,-1.7084872785E-001), AV 35 X (-3.4215381085E-001,-8.9067646330E-002), AV 36 <td>Х</td> <td>(3.6307084828E+001,-2.0961355813E+001),</td> <td>AV</td> <td>20</td>	Х	(3.6307084828E+001,-2.0961355813E+001),	AV	20
X (-2.8001653691E+003, 4.66649365984E+002), AV 22 X (5.3556088329E-001, 0.00000000E+000), AV 23 X (9.2407365385E-001,-1.9106560052E-001), AV 24 X (1.8716185961E+000,-2.5743310394E+000), AV 25 X (-7.2188436328E+000,-1.2924200190E+001), AV 26 X (-7.2188436328E+000,-1.2924200190E+001), AV 27 X (-8.1787377840E+001, 3.2087013839E+001), AV 28 X (2.9933948552E+002, 5.6922179258E+002), AV 28 X (3.1203438104E-001,-3.8845385098E-001), AV 29 X (3.1203438104E-001,-1.0976411220E+000), AV 31 X (-4.2009351585E+000, 1.1940151191E+000), AV 32 X (1.0129121011E+002,-7.5951233292E+001), AV 32	Х	(-6.7139789190E+001,-3.0904638708E+002),	AV	21
X (5.3556088329E-001, 0.000000000000E+000), AV 23 X (9.2407365385E-001, -1.9106560052E-001), AV 24 X (1.8716185961E+000, -2.5743310394E+000), AV 25 X (-7.2188436328E+000, -1.2924200190E+001), AV 26 X (-7.2188436328E+000, -1.2924200190E+001), AV 26 X (-8.1787377840E+001, 3.2087013839E+001), AV 27 X (2.9933948552E+002, 5.6922179258E+002), AV 28 X (3.5502805389E-001, 0.000000000E+000), AV 29 X (3.1203438104E-001, -3.8845385098E-001), AV 29 X (-5.2839999360E-001, -1.0976411220E+000), AV 30 X (-4.2009351585E+000, 1.0960912513E+001), AV 32 X (-1.6129121011E+002, -7.5951233292E+001), AV 32 X (1.0129121011E+002, -7.5951233292E+001), AV 34 X (1.3529241631E-001, 0.000000000E+000), AV 35 X (1.32618478398E-002, -1.7084872785E-001), AV 36 X (-3.4215381085E-001, -8.9067646330E-002), AV 37	Х	(-2.8001653691E+003, 4.6649365984E+002),	AV	22
X (9.2407365385E-001,-1.9106560052E-001), AV 24 X (1.8716185961E+000,-2.5743310394E+000), AV 25 X (-7.2188436328E+000,-1.2924200190E+001), AV 26 X (-8.1787377840E+001, 3.2087013839E+001), AV 27 X (2.9933948552E+002, 5.6922179258E+002), AV 28 X (3.5502805389E-001, 0.000000000E+000), AV 29 X (3.1203438104E-001,-3.8845385098E-001), AV 30 X (-5.2839999360E-001,-1.0976411220E+000), AV 30 X (-4.2009351585E+000, 1.1940151191E+000), AV 32 X (1.0129121011E+002,-7.5951233292E+001), AV 32 X (1.3529241631E-001, 0.000000000E+000), AV 34 X (1.3529241631E-001, 0.00000000E+000), AV 35 X (1.32618478398E-002,-1.7084872785E-001), AV 36 X (-3.4215381085E-001,-8.9067646330E-002), AV 37 X (-1.4509641493E-001, 1.0328015748E+000), AV 38 X (-1.4509641493E-001, 1.0328015748E+000), AV 38 <td>X</td> <td>(5.3556088329E-001, 0.000000000E+000),</td> <td>AV</td> <td>23</td>	X	(5.3556088329E-001, 0.000000000E+000),	AV	23
X (1.8716185961E+000,-2.5743310394E+000), AV 25 X (-7.2188436328E+000,-1.2924200190E+001), AV 26 X (-8.1787377840E+001, 3.2087013839E+001), AV 27 X (2.99933948552E+002, 5.6922179258E+002), AV 28 X (3.5502805389E-001, 0.000000000E+000), AV 29 X (3.1203438104E-001,-3.8845385098E-001), AV 30 X (-5.2839999360E-001,-1.0976411220E+000), AV 30 X (-4.2009351585E+000, 1.1940151191E+000), AV 32 X (1.0129121011E+002,-7.5951233292E+001), AV 33 X (1.3529241631E-001, 0.00000000E+000), AV 34 X (1.3529241631E-001, 0.00000000E+000), AV 35 X (1.3529241631E-001, 0.00000000E+000), AV 35 X (1.3529241631E-001, 0.00000000E+000), AV 36 X (-3.4215381085E-001, -8.9067646330E-002), AV 37 X (-1.4509641493E-001, 1.0328015748E+000), AV 37 X (-1.4509641493E-001, 1.0328015748E+000), AV 38	Х	(9.2407365385E-001,-1.9106560052E-001),	AV	24
X (-7.2188436328E+000,-1.2924200190E+001), AV 26 X (-8.1787377840E+001, 3.2087013839E+001), AV 27 X (2.99933948552E+002, 5.6922179258E+002), AV 28 X (3.5502805389E-001, 0.000000000E+000), AV 29 X (3.1203438104E-001,-3.8845385098E-001), AV 30 X (-5.2839999360E-001,-1.0976411220E+000), AV 31 X (-4.2009351585E+000, 1.1940151191E+000), AV 32 X (7.1858832892E+000, 1.9600912513E+001), AV 33 X (1.0129121011E+002,-7.5951233292E+001), AV 34 X (1.3529241631E-001, 0.00000000E+000), AV 35 X (1.3529241631E-001, 0.00000000E+000), AV 36 X (1.45509641493E-001, 1.0328015748E+000), AV 37 X (-1.4509641493E-001, 1.0328015748E+000), AV 38 <t< td=""><td>Х</td><td>(1.8716185961E+000,-2.5743310394E+000),</td><td>AV</td><td>25</td></t<>	Х	(1.8716185961E+000,-2.5743310394E+000),	AV	25
X (-8.1787377840E+001, 3.2087013839E+001), AV 27 X (2.99933948552E+002, 5.6922179258E+002), AV 28 X (3.5502805389E-001, 0.00000000E+000), AV 29 X (3.1203438104E-001, -3.8845385098E-001), AV 30 X (-5.2839999360E-001, -1.0976411220E+000), AV 31 X (-4.2009351585E+000, 1.1940151191E+000), AV 32 X (7.1858832892E+000, 1.9600912513E+001), AV 33 X (1.0129121011E+002, -7.5951233292E+001), AV 34 X (1.3529241631E-001, 0.00000000E+000), AV 35 X (1.32618478398E-002, -1.7084872785E-001), AV 36 X (-3.4215381085E-001, -8.9067646330E-002), AV 37 X (-1.4509641493E-001, 1.0328015748E+000), AV 38 X (4.1001968523E+000, -6.8936911760E-001), AV 38	X	(-7.2188436328E+000, -1.229242001900E+001),	AV	26
X (2.9933948552E+002, 5.6922179258E+002), AV 28 X (3.5502805389E-001, 0.000000000E+000), AV 29 X (3.1203438104E-001,-3.8845385098E-001), AV 30 X (-5.2839999360E-001,-1.0976411220E+000), AV 31 X (-4.2009351585E+000, 1.1940151191E+000), AV 32 X (7.1858832892E+000, 1.9600912513E+001), AV 33 X (1.0129121011E+002,-7.5951233292E+001), AV 34 X (1.3529241631E-001, 0.00000000E+000), AV 35 X (1.3529241631E-001, 0.00000000E+000), AV 35 X (1.3529241631E-001, 0.00000000E+000), AV 36 X (1.3529241631E-001, 0.00000000E+000), AV 35 X (1.3529241631E-001, 0.00000000E+000), AV 36 X (1.4559641493E-001, 1.0328015748E+000), AV 37 X (-1.45509641493E-001, 1.0328015748E+000), AV 38 X (4.1001968523E+000, -6.8936911760E-001), AV 39	×	$(-8.1/8/3/1/840\pm+001, 3.208/013839\pm+001),$	AV	27
X (3.5502805389E-001, 0.000000000000000000000000000000000	X	(2.9933948552E+002, 5.69221/9258E+002),	AV	28
X (3):1203430104E=001,-3:034330398E=001); AV 30 X (-5:2839999360E=001,-1:0976411220E+000); AV 31 X (-4:2009351585E+000, 1:1940151191E+000); AV 32 X (7:1858832892E+000, 1:9600912513E+001); AV 33 X (1:0129121011E+002,-7:5951233292E+001); AV 34 X (1:3529241631E=001, 0:00000000E+000); AV 35 X (3:2618478398E=002,-1:7084872785E=001); AV 36 X (-3:4215381085E=001,-8:9067646330E=002); AV 37 X (-1:4509641493E=001, 1:0328015748E+000); AV 38 X (4:1001968523E+000); AV 38	X	(3.5502805389E-001, 0.00000000000000),	AV	29
X (-3.2839999380E-001,-1.0978411220E+000), AV 31 X (-4.2009351585E+000, 1.01940151191E+000), AV 32 X (7.1858832892E+000, 1.09600912513E+001), AV 33 X (1.0129121011E+002,-7.5951233292E+001), AV 34 X (1.3529241631E-001, 0.00000000E+000), AV 35 X (3.2618478398E-002,-1.7084872785E-001), AV 36 X (-3.4215381085E-001,-8.9067646330E-002), AV 37 X (-1.4509641493E-001, 1.0328015748E+000), AV 38 X (4.1001968523E+000,-6.8936911760E-001), AV 39			AV	30
X (-4.20093515852+000, 1.19401511912+000), AV 32 X (7.1858832892E+000, 1.9600912513E+001), AV 33 X (1.0129121011E+002,-7.5951233292E+001), AV 34 X (1.3529241631E-001, 0.000000000E+000), AV 35 X (3.2618478398E-002,-1.7084872785E-001), AV 36 X (-3.4215381085E-001,-8.9067646330E-002), AV 37 X (-1.4509641493E-001, 1.0328015748E+000), AV 38 X (4.1001968523E+000,-6.8936911760E-001), AV 39	X	(-2002515977330UE+UUI)-1.007(041122UE+UUU))	AV	27
X (1:0129121011E+002,-7.5951233292E+001), AV 34 X (1:3529241631E-001, 0:000000000E+000), AV 35 X (3:2618478398E-002,-1:7084872785E-001), AV 35 X (-3:4215381085E-001,-8:9067646330E-002), AV 36 X (-1:4509641493E-001, 1:0328015748E+000), AV 38 X (4:1001968523E+000,-6:8936911760E-001), AV 39	$\hat{\mathbf{v}}$	$(-4 \cdot 20073515052+000)$ 1 · 174015117412+000)		22
X (1.01291210111+0029-7109912352922+0017); AV 34 X (1.03529241631E-001, 0.000000000E+000); AV 35 X (3.2618478398E-0029-1.7084872785E-001); AV 36 X (-3.4215381085E-0019-8.9067646330E-002); AV 37 X (-1.4509641493E-001; 1.00328015748E+000); AV 38 X (4.1001968523E+000); -6.8936911760E-001); AV 39	0	(1 010002207217000) 10/0007125121001);		20
X (3.2618478398E-002,-1.7084872785E-001), AV 36 X (-3.4215381085E-001,-8.9067646330E-002), AV 37 X (-1.4509641493E-001, 1.0328015748E+000), AV 38 X (4.1001968523E+000,-6.8936911760E-001), AV 39	×	<pre>(1.3529241631E=001. 0.0000000E=0001);</pre>		24 25
X (-3.4215381085E-001, -8.9067646330E-002), AV 37 X (-1.4509641493E-001, 1.0328015748E+000), AV 38 X (4.1001968523E+000, -6.8936911760E-001), AV 39	Ŷ	(3,2618478398E=002==1,7084872785E=001) =		36
X (-1.4509641493E-001, 1.0328015748E+000), AV 37 X (-1.4509641493E-001, 1.0328015748E+000), AV 38 X (4.1001968523E+000,-6.8936911760E-001), AV 39	0	<pre>/ /</pre>	~ V A V	27
X (4.1001968523E+000,-6.8936911760E-001), AV 39	0	<pre>/ /_1.4509641493E_001. 1.0328015748E±0001.</pre>	AV	28
	x	<pre>(4.1001968523F+0006.8936911760F-001).</pre>	ÂV	39

х	(-1,3030124036E+001,-1,6910541453E+001),	AV	40
X	(3.4924130423E-002, 0.000000000E+000);	AV	41
x	(-8,4464726625E-003,-4,2045154421E-002) ·	ΔV	42
Ŷ	(_6_9313268963E_002, 3, 5364798705E_002)		43
$\hat{\mathbf{v}}$	$(-0_{\pm})_{\pm}_{\pm}_{\pm}_{\pm}_{\pm}_{\pm}_{\pm}_{\pm}_{\pm}_{\pm}$		~+_) 1. (.
A	(1 - 3227622046E = 001) $(1 - 2646454474E = 001)$	AV	44
Х	(1.06813/3184E-001,-6.7766153503E-001),	AV	45
Х	(-2°6193432727E+000° 1°5699859905E+000)°	AV	46
Х	(6,5911393574E-003, 0,000000000E+000),	AV	47
Х	(-3°9443985580E-003°-6°8060106117E-003)°	AV	48
х	(-5,9820131079F-003, 1,1799010149F-002),	AV	49
Ŷ	(2 9922/98/06=-002-5 9772930727=-003)		50
$\hat{\cdot}$	(26) 722 700 000 - 002 7 301 1220 0 315 - 000 19	AV	50
X	(-1) (404130231E-002) - 5 (22924021) + 5 (202))	AV	51
X	(1.12/6585896E-001, 3.5112442431E-001),	AV	52
Х	(9°5156382151E-004° 0°0000000000E+000)	AV	53
Х	(-8.0842995655E-004,-7.6590132690E-004),	AV	54
Х	(1.6147816065E-004, 1.7661755136E-003),	AV	55
x	(2-0138718363E-0033-1976716632E-003)	AV	56
Ŷ	(=9,50,86,78,44,0)	ΔV	57
$\hat{\mathbf{Q}}$		A.V.	
×	(3,700171017E-002, 5,730171054E-004),	AV	20
Х	(1.0834442814E-004, 0.000000000E+000),	AV	59
Х	(-1.0968606480E-004,-5.9902329668E-005),	AV	60
Х	(1.0778191327E-004, 1.5771596227E-004),	AV	61
Х	(-6.8980937889E-005,-3.7626457370E-004),	AV	62
х	(-1.6166126174E-004, 9.7457773280E-004),	AV	63
x	(9.9476943603E=006 , 0.000000000E+000) .	ΔV	64
$\hat{\mathbf{v}}$	(-1, -0.05, -0.00, -0	Δ.V	65
0		~ V A V	05
<u>.</u>	(1,4,1)	AV	00
Х	(-2.4446015180E-005,-2.0638143108E-005),	AV	67
Х	(7.4921288640E-007, 0.000000000E+000),	AV	68
Х	(-8.4619068946E-007,-3.6807338399E-008),	AV	69
Х	(1.2183963384E-006, 8.3589199402E-008))	AV	70
D	IMENSION APV(70) \$ COMPLEX APV \$ DATA (APV=	APV	0
X	(3,4593548728E-001, 0,00000000E+000),	APV	1
x	(4-1708876594E+000, 6-2414437707E+000)	ΔPV	2
Ŷ	(2 27192818555-001, 0.0000000005+000).	ADV	2
$\hat{}$	(3)		
÷			
<u>.</u>		APV	2
X	(-1.0264877579E+003,-5.6707940802E+002),	APV	6
Х	(-/.906285/53/E-001, 0.000000000E+000),	APV	7
Х	(-3.8085833358E+000, 1.5129605192E+000),	APV	8
Х	(-2.6086379081E+001, 3.5540709915E+001),	APV	9
х	(1.0761838222F+002, 5.1239944904F+002).	ΔPV	10
X	(6-6597797197E+003, 1-8096186253E+003),	APV	11
0			1 7
÷.		APV	12
X	(1,0/154254/00+000), 2,0544836557(000)),	APV	13
X	(2.2591/36932E+001, 4.85629954/4E+000),	APV	14
X	(1.616299/8/9E+002,-1.433559/185E+002),	APV	15
Х	(-8.0047161665E+002,-2.1527454270E+003),	APV	16
Х	(6.1825902074E-001, 0.000000000E+000),	APV	17
Х	(1.3019603890E+000,-1.2290774954E+000),	APV	18
Х	(1.5036118745E-001,-1.1008092874E+001),	APV	19
Х	(-7,0116800393E+001,-4,0480822759E+001),	APV	20
X	(-4,8317166902E+002, 4,9692755718E+002),	APV	21
X	(4.8970655652E+003, 4.8627290801E+003),	A D V	22

Х	(-1.0160567116E-002, 0.000000000E÷000),	APV	23
Х	(-5,4826636454E-001,-7,1365288463E-001),	APV	24
х	(-4,6749134088F+000,-1,1924245293F-001)	APV	25
Ŷ	(_1.0536397828E+001, 2.4943711387E+001),	ΔPV	26
$\hat{\mathbf{x}}$			20
X	(1.63337770696E+002, 9.0394910688E+001),	APV	21
Х	(5°6449455285E+002°-1°4248324426E+003)°	APV	28
Х	(-2.5881940380E-001, 0.0000000000E+000),	APV	29
Х	(-4.8620754109E-001, 1.5689924913E-001),	APV	30
X	(-4,7348131897E-001, 1,7093438130E+000).	ΔPV	21
$\hat{\mathbf{v}}$			22
Ň	(1,03/3040/03/E+000) 3.60201024910E+0001)	APV	22
X	$(1,7/39585722+001) - 4 \cdot 03504224022+001)$	APV	33
Х	{=2。9791511956E+0029=3。8408892977E+001)	APV	34
Х	(-1.5914744130E-001; 0.0000000000E+000);	APV	35
Х	(-1.1340423572E-001, 1.9730504925E-001),	APV	36
х	(4.0126209154E-001, 3.9222995820E-001),	APV	37
Y	(1 3348652430E+0001-4377272421E+000) -	APV	38
v			20
$\hat{\mathbf{v}}$			55
X	(-1.3892/3210/E+000, 5.1229410/8/E+001),	APV	40
Х	(-5 ₀ 3090384434E-002g 0.0000000000E+000)g	APV	41
Х	(-1.6832965528E-003, 6.8366967859E-002),	APV	42
Х	(1.3789401334E-001,-1.1613804016E-002),	APV	43
Х	(-1.4713730621E-001,-3.7151985747E-001),	APV	44
x	(-1,0070196495E+000, 1,1591348425E+000)	APV	45
Ŷ	(7.50/50491335+000, 4,69131153835=001)	APV	46
<u></u>			40
X		APV	41
Х	(5,1468574932E=003, 1,3660891236E=002),	APV	48
Х	(1.8309710537E=002,-1.8808588497E=002),	APV	49
Х	(-6 _* 4461593156E-002 _* -1 _* 3611794718E-002)*	APV	50
Х	(1.0516239905E-001, 1.9313053560E-001),	APV	51
X	(2,0520046212F-001,-9,1772617372F-001),	APV	52
x	(-1, 9586409502E - 0.03, 0, 000000000E + 0.00)	APV	53
Ŷ	(1,4695649526E=003, 1,8086384633E=003)	ΔPV	54
0	(5 9709947951E-004 -2 8232699216E-003).	ADV	55
0			57
Ň	(-6,8910893004E-003) 5.4467423272E-003)	APV	20
X	(2,616/92/738E=002,9-8.4092000294E=004),	APV	51
Х	(-8.82844/4192E-002,-4.64/53121/9E-002),	APV	58
Х	(-2,4741389087E-004, 0,0000000000E+000),	APV	59
Х	(2.3707837404E-004, 1.6461109527E-004),	APV	60
Х	(-1,7465569860E-004,-4,2026783985E-004),	APV	61
х	(-1,0394516180F-004, 9,4761844375F-004),	APV	62
X	(1,3004110522E-003,-2,2446656813E-003).	APV	63
Ŷ		APV	64
0			45
X	(2.67146709622=005, 9.6691565027E=0065,	APV	60
X	$(-3,3539774178\pm-005,-2,7113284942\pm-005),$	APV	66
Х	(4 ₀ 9197843140E-005, 609349092091E-005),	APV	67
Х	(-2.0081508947E-006, 0.000000000E+000),	APV	68
Х	(2,2671244519E-006, 2,7848508382E-007),	APV	69
Х	(-3·2692132725E-006·-7·3943488682E-007))	APV	70
ſ	MENSION ASLT(17) \$ DATA (ASLT= 1.1407E+002, 1.1549E+002,	ASLT	0
x	1.1779E+002, 1.2124E+002, 1.2619E+002, 1.3319E+002.	ASLT	1
x	1.4307F+002: 1.5716F+002: 1.7774F+002: 2.0884F+002:	ASLT	2
$\hat{\mathbf{v}}$	2.5832E±002. 3.4294E±002. 5.0339E±002. 8.5678E±002.		3
$\hat{}$	2 = 3 = 3 = 2 = 1 = 1 = 2 = 2 = 1 = 1 = 1 = 1 = 1		
^,	$\sum_{i=0}^{i=0} \sum_{j=0}^{i=0} \sum_{i=0}^{i=0} \sum_{j=0}^{i=0} $	ACU	~
L	VINENDION MOAN STI D DAIM (MOAH TORRODANCLAIDA	ASV	0

59

1.9293755496E+009, 2.1428803701E+008, 2.5198919876E+007, ASV 1 Х 3.1482574185E+006, 4.1952487519E+005, 5.9892513580E+004, ASV 2 Х 9.2072066015E+003, 1.5331694323E+003, 2.7846508084E+002, 3 Х ASV 5.5622785377E+001, 1.2341573335E+001, 3.0794530307E+000, 4 ASV Х 8.7766696967E-001, 2.9159139927E-001, 1.1609906404E-001, ASV 5 Х 5.7649190421E-002, 3.7993059132E-002, 3.7133487657E-002, х ASV 6 6.944444448E-002, 1.000000000E+000) ASV 7 х DIMENSION APSV(21) \$ DATA (APSV=-1.8643931093E+010, APSV 0 -1.9635237894E+009,-2.1829342088E+008,-2.5697908389E+007, Х APSV 1 -3.2145365220E+006,-4.2895240048E+005,-6.1335706678E+004, APSV Х 2 -9.4463548250E+003,-1.5763573037E+003,-2.8703323717E+002, APSV 3 Х -5.7508303524E+001,-1.2807293083E+001,-3.2104935853E+000, APSV Х 4 -9.2047999257E-001,-3.0825376496E-001,-1.2410589605E-001, APSV 5 Х -6.2662163500E-002,-4.2462830794E-002,-4.3885030868E-002, APSV х 6 -9.722222227E-002, 1.000000000E+000) APSV 7 Х DIMENSION NQTT(15), NQT(8) \$ EQUIVALENCE (NQTT(8), NQT(1)) DATA(NQTT=1,3,7,12,17,23,29,35,41,47,53,59,64,68,71) ANM(Z)=ABSF(REAL(Z))+ABSF(AIMAG(Z)) ENTRY AI \$ LA=0 \$ GO TO 1 ENTRY AIP \$ LA=0 \$ GO TO 2 ENTRY WI \$ ENTRY WI1 \$ LA=1 \$ GO TO 1 ENTRY WIP \$ ENTRY WI1P \$ LA=1 \$ GO TO 2 ENTRY WI2 \$ LA=-1 \$ GO TO 1 ENTRY WI2P \$ LA=-1 \$ GO TO 2 1 LB=0 \$ GO TO 3 2 LB=1 \$ GO TO 3 3 Z=ZZ IF(LA) 5,7,4 4 U=(-0.5,0.86602540378) \$ GO TO 6 5 U = (-0.5, -0.86602540378)6 Z=U*Z 7 LC=0 \$ IF(X(2)) 8,9,10 8 LC=1 \$ X(2)=-X(2) \$ GO TO 10 9 X(2)=0. COMPARE WITH PREVIOUS 10 CONTINUE IF(X(1) .NE. X1(1) .OR. X(2) .NE. X1(2)) GO TO 20 I=LB+1 \$ I=LG.AND.I \$ IF(I) GO TO 400 IF(LB) 220,210 400 CONTINUE EXIT IF(LB) 402,401 401 ZT=A \$ IF(LC)XT(2)=-XT(2) IF(LA)404,411,403 402 ZT=AP \$ IF(LC)XT(2)=-XT(2) IF(LA)403,411,404 403 U=(1.,-1.7320508076) \$ GO TO 410 404 U=(1.,1.7320508076) \$ GO TO 410 410 ZT=U*ZT 411 AIRY=ZT \$ RETURN 20 CONTINUE AFFINE COORDINATES M=0 Z1=Z \$ LG=0 IF(X(1) • LE • -7 • • OR • X(1) • GT • 7 • • OR • X(2) • GT • 6 • 928203232) GO TO 200 IP = 7 - X(1) P = IP = 7 - IP

Q=IQ=0.86602540378*X(2)+0.5*(P-X(1))

N=NQT(IP)+IQIF(N.GE.NQT(IP+1)) GO TO 200 100 CONTINUE SERIES XT(1)=P \$ XT(2)=1.1547005384*Q U=Z-ZT \$ B1=AV(N) \$ B3=B1*ZT*U \$ AP=APV(N) \$ B2=AP*U A=B2+B1 \$ AP=AP+B3AN=1. DO 110 I=2,3 AN=AN+1. B3=B3*U/AN A=B3+A B0=B1 \$ B1=B2 \$ B2=B3 B3=(ZT*B1+U*B0)*U/AN AP=B3+AP IF (ANM(B2).GT.0.5E-10*ANM(A) .AND. ANM(B3).GT.0.5E-10*ANM(AP)) I=0 110 CONTINUE LG=3GO TO 400 200 CONTINUE ASYMPTOTICS ZA=CSQRT(Z) ZB=0.28209479177/CSQRT(ZA) ZT=-0.666666666667*Z*ZA T = XT(1) * * 2 + XT(2) * * 2CALL ZEXP(XT(1),XT(2),SX,SY,M) ZE=CMPLX(SX,SY) ZM=2.718281828**(M+M) ZR=1./ZT IF(XT(2) .GT. 0. .AND. XT(1) .LT. 11.8595) LG=4 DO 201 NT=2,18 IF(T .LT. ASLT(NT-1)) GO TO 202 201 CONTINUE \$ NT=19 202 IF(LB) 220,210 210 CONTINUE А ZT=ASV(NT-1) DO 211 I=NT,21 211 ZT=ASV(I)+ZT*ZR A=ZT*ZE I=4.AND.LG \$ IF(I) 212,216 212 ZT=ASV(NT-1) DO 213 I=NT,21 213 ZT=ASV(I)-ZT*ZR A=A+(0.,1.)*ZT/(ZE*ZM)216 A=ZB*A \$ LG=1.0R.LG \$ GO TO 401 220 CONTINUE AP ZT=APSV(NT-1) DO 221 I=NT +21 221 ZT = APSV(I) + ZT * ZRAP=-ZT*ZE I=4.AND.LG \$ IF(I) 222,226 222 ZT=APSV(NT-1) DO 223 I=NT,21 223 ZT=APSV(I)-ZT*ZR $AP=AP+(0 \circ 1 \circ) \times ZT/(ZE \times ZM)$ 226 AP=ZA*ZB*AP \$ LG=2.0R.LG \$ GO TO 402

END

7. APPENDIX: AN IONOSPHERIC REFLECTION COEFFICIENT PROGRAM 7.1 General Description

The propagation program described in the main body of this report requires ionospheric reflection coefficients as input. We will now describe briefly a computer program that can be used to calculate such reflection coefficients for any profile of ionospheric electron density.

We assume a plane ionosphere whose electron density and electronneutral collision frequency vary only with altitude and a static magnetic field with constant dip angle and magnitude. For an infinite plane wave incident from below on the ionosphere at an angle, φ , we compute the reflection coefficient matrix defined by

$$\begin{bmatrix} \mathbf{F} \\ \mathbf{F}$$

where the pre-subscript indicates the incident or reflected wave and the post-subscript indicates whether the electric or magnetic vector is in the plane of incidence (e is "vertical polarization," m is "horizontal polarization").

The solution is accomplished by (1) dividing the ionosphere into thin homogeneous slabs whose properties are those of the continuous profile at the center of the slab, (2) solving Maxwell's equations in each slab, and (3) satisfying the boundary conditions at the slab interfaces. The solution is derived by Johler and Harper (1962).

The user must determine the height profile of electron density, the magnetic field parameters (strength, dip angle, azimuth relative to direction of propagation), the radio frequency, and the angle of incidence. By modifying the appropriate subroutine, he may specify the collision frequency. The magnetic field parameters are well known (certainly to the precision required for this application), and maps of them can be found for instance in Davies (1965).

The collision frequency is also fairly well known--it decreases almost exponentially with height with a slope that the experts agree on. There is about a factor of 3 disagreement on the absolute magnitude at a given height (or an uncertainty of about 3 km in the height for a given value). The collision frequency computed in the subroutine CFEO is that recommended by Gambill and Knapp (1969). You can change subroutine CFEO to return any collision frequency profile you want.

We do not know the height distribution of electrons in the lower ionosphere very well yet; nor do we know how the electron density varies with season, sunspot cycle, latitude, etc. So we have included two versions of subroutine ENN to define electron density as a function of height. One simply interpolates in a table supplied as input by the user. The other contains a crude model ionosphere, which varies with the sun's zenith angle. This latter model (described by Berry and Jones (1970)) does a fair job of predicting the LF and VLF field strength variations during the day, especially at middle latitudes. You can easily incorporate any model of the ionosphere you want into the calculation by writing an appropriate version of ENN and substituting it for the version listed in this report.

Figure 14 shows a large block diagram of the organization of the program ANIREF. Details of the implementation can be determined from the comments cards in the FORTRAN listing at the end of this appendix.

7.2 A Sample Case

Table 2 lists the input parameters required by the program. The input for a sample case is shown in figure 15. The block diagram in

Figure 14. Flow chart for Program ANIREF.

Variable	Physical Quantity	Units	Comments
IFR	Number	ynnan y de y wedd ar fel ar fel ar yn yn gyn yn yn gyn ar yn yn ar fel ar yn y	Number of frequencies to be read in; maximum of 9.
FRE(I)	Radio frequency	kHz	
NPA	Number		Number of sets of magnetic field parameters; maximum of 8.
PHA(I)	Angle	Degrees	Azimuth of propagation of incident wave measured clockwise from north.
HA(I)	Magnetic strength	Gauss	Earth's magnetic field intensity.
DAP(I)	Dip	Degrees	Magnetic field dip angle, measured from horizontal.
NPI	Number		Number of angles of incidence; maximum of 10.
SPHI(I)	Angle	Degrees	Angle of incidence of radio wave on ionosphere; measured from vertical.
PROFLE(I)			Alphanumeric identification of ionospheric model.
HITE	Height	km	Height of bottom of ionosphere. Should equal Z(1) if ionosphere is defined by a table.
LAYR	Number		Number of data cards defining ionospheric model.
Z(L) EN(L)	Height Electron density	km electrons per cc	Usually a table defining electron density as a function of height. Can also be used to define parameters of an analytic model of electron density.

Table 2. Input Data for Program ANIREF

ი თ ANIREF INPUT

Figure 15. List of input data deck for ANIREF sample case.
figure 16 shows possibilities of data deck set up when several cases are to be run at one time.

The printed output for this sample case is listed in figures 17 and 18. The punched cards produced by this sample case are listed in figure 19. These cards are in the right format to be used as input to ANIHOP and were used as input for the sample case in the main body of this report (compare fig. 4).

The input electron density profile is printed on the first page of output (fig. 17). Then a table of computed reflection coefficients is printed under a heading which contains the other relevant input information. Comments have been superimposed on the printout to help explain the various entries.

7.3 Mathematical Details of Reflection Coefficient Calculation The main subroutine of ANIREF solves the set of equations

(A2)

Figure 16. Data deck setup for Program ANIREF.

print out of input profile

SAN FRAN S	EAPATH NIGH	т н	=74.00	KM,	19 PTS	
74.00	1.63+000					
76.00	7.67+000					
78.00	2.31+001					
80.00	5.10+001					
82.00	9.70+001					
84.00	1.57+002					
86.00	2.25+002					
88.00	2.96+002					
90.00	3.69+002					
92.00	4.58+002					
94.00	5.58+002					
96.00	6.74+002					
98.00	8.11+002					
100.00	9.74+002					
105.00	1.20+003					
110.00	1.37+003					
115.00	1.58+003					
120.00	1.82+003					
125.00	2.09+003					
4	A					
A	A					
4	44					
<u>₽</u>						
h	N(h), per	сс				

Figure 17. Printed output from ANIREF sample case, page 1.

Figure 18. Printed output from ANIREF sample case, page 2.

ANIREF PUNCHED OUTPUT

identification

azimuth dip angle

ngle field intensity

Figure 19. List of punched card output from ANIREF sample case.

Ļ

The elements of the matrix are defined by Johler and Harper (1962) in their equations (33-35) (note an error in the general form of their subscripts). They depend on the roots of a quartic equation ((8) through (20) of Johler and Harper (1962)), which in turn depends on the ionospheric model, radio frequency, and direction of propagation.

Instead of solving (A2) directly, we divide the matrix into block matrices:

$$\begin{bmatrix} A_{11} & A_{12} & 0 & 0 & \cdot & \cdot & \cdot & \cdot \\ A_{21} & A_{22} & A_{23} & 0 & \cdot & \cdot & \cdot & \cdot \\ 0 & A_{32} & A_{33} & A_{34} & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdot & \cdot & 0 & \cdot & \cdot \\ \cdot & \cdot & \cdot & A_{p-1,p-2} & A_{p-1,p-1} & A_{p-1,p} \\ 0 & \cdot & \cdot & 0 & A_{p,p-1} & A_{pp} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ \cdot \\ U_3 \\ U_1 \\ U_2 \\ U_1 \\ U_2 \\ U_3 \\ U_1 \\ U_2 \\ U_1 \\ U_1 \\ U_2 \\ U_1 \\ U_2 \\ U_1 \\ U_2 \\ U_1 \\ U_2 \\ U_1 \\ U_1 \\ U_2 \\ U_1 \\ U_1 \\ U_2 \\ U_1 \\ U_1 \\ U_1 \\ U_2 \\ U_1 \\ U$$

±.) ±

Consider the rows as separate equations and solve the last one for $U_{_{\rm D}}$

$$U_{p} = -A_{pp}^{-1} A_{p,p-1} U_{p-1}.$$
 (A4)

Substitute this value into the next-to-last equation, so it has only two unknowns and solve for U_{p-1} . Repeat the process until U_1 is found. The algorithm is: Let

$$B_{p} = A_{pp} , \qquad (A5)$$

and let

$$B_{k} = A_{kk} - A_{k,k+1} B_{k+1}^{-1} A_{k+1,k}, \text{ for } 1 \le k < p.$$
 (A6)

Then

$$B_1 U_1 = K$$
, or $U_1 = B_1^{-1} K$. (A7)

Since only columns 3 and 4 of $A_{k+1,k}$ and columns 1 and 2 of $A_{k,k+1}$ are nonzero, the elements of the A_{ij} are stored in a 4p×8 array arranged as follows:

Column No. 1,2 3,4,5,6 7,8

$$\begin{bmatrix}
0 & A_{11} & A_{12} \\
A_{21} & A_{22} & A_{23} \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
A_{p,p-1} & A_{pp} & 0
\end{bmatrix}$$
(A8)

The real and imaginary parts of (A8) are stored in separate arrays. The rows a_{ik} and b_{ik} of each layer (see (A2)) have been interchanged for convenience. If the elements of (A8) are denoted α_{i} , then

$$\alpha_{4p+1,j} = b_{p,m}, \ \alpha_{4p+2,j} = a_{p,m},$$
 (A9)
 $\alpha_{4p+3,j} = c_{p,m}, \ \text{and} \ \alpha_{4p+4,j} = d_{p,m},$

where m = 4p + j - 6, and a_{ij} , b_{ij} , c_{ij} , and d_{ij} are the elements of (A2).

After the array (A8) has been generated, the B_k are computed as follows:

- (1) $B_k^{-1} A_{k,k-1}$ is computed and stored in A_{kk} . B_k^{-1} is found by solving $B_k B_k^{-1} = I$.
- (2) Then B_{k-1} is calculated using (A6) and stored in $A_{k-1, k-1}$, and the process is repeated.

When B₁ has been calculated, columns 1 and 2 are interchanged with columns 3 and 4 (to prevent zeros on the diagonal in certain cases) and (A7) is solved. The reflection coefficients have now been found.

The phase of the reflection coefficient is referenced to the bottom of the ionospheric profile. We also compute the quasi-stationary phase height of T_{ee} as follows: There is a height where the phase of T_{ee} is nearly π over a considerable range of angles of incidence near grazing. In general the phase of T_{ee} at height h_{r} in terms of the phase at h_{o} is

$$p_r = p_0 + \frac{4\pi}{\lambda} \cos \varphi (h_r - h_0) , \qquad (A10)$$

where p_i is the phase at height h_i . So let $p_r = \pi$ and solve for h_r :

$$h_{r} = h_{o} + \frac{\pi - p_{o}}{\frac{4\pi \cos \varphi}{\lambda}} .$$
 (A11)

We call h_r the quasi-stationary phase height.

7.4 FORTRAN Listing of Program ANIREF and Its Subroutines

PROGRAM ANI REF

С

```
COMPUTES IONOSPHERIC REFLECTION COEFFICIENTS FOR STRATIFIED IONOSPHERE
¢
      BY L. A. BERRY AND J. E. HERMAN, OFFICE OF TELECOMMUNICATIONS
С
      REFERENCE IS TELECOMMUNICATIONS RESEARCH REPORT NO. 11 ,
C
С
      ITS, BOULDER COLORADO, 80302
С
      DIMENSION FRE(9), SPHI(10), PHA(8), HA(8), DAP(8)
      DIMENSION PROFLE(5), EN(80), Z(80)
      DIMENSION PR(4), PI(4), QR(4), QI(4), ZR(4), ZI(4)
      DIMENSION AR(600,8), AI( 600,8)
      DIMENSION ROOT(8), COF(10)
      COMMON AR, AI, PR, PI, QR, QI, ROOT, AL, AT, F, DELTA, CFII, SFIA, CFIA,
     1 CI,SI,HM,OMEGA
        ,ZMA,WAVE,COF
     2
      COMMON/1/ Z, EN, LAYR, TEER, TEEI, TEEA, TEEP, TEMR, TEMI, TEMA, TEMP,
     1 TMER, TMEI, TMEA, TMEP, TMMR, TMMI, TMMA, TMMP
    1 FORMAT(F10.2,E10.2)
    2 FORMAT(1H )
                                                                         ΤE
    3 FORMAT(* FREQ
                        PHII
                                   TEE AMPL
                                               TEE PHASE
                                                            TEM AMPL
                                         TMM AMPL
                          TME PHASE
                                                      TMM PHASE HT
     1M PHASE
                TME AMPL
         KLOCK *)
     2
    4 FORMAT(1H1)
    6 FORMAT(2F8.2,8F12.8,F6.1,7X ,I9)
    7 FORMAT(5A6,5H H = F5.2,5H KM, ,15,8H POINTS. )
    8 FORMAT(8F10.0)
    9 FORMAT(1H0,9X,12HPHI SUB A = F7.2,11H DEG, DIP = F7.2,
     110H DEG, HM = F6.3,18H GAUSS DELTA Z=F5.2, 7H LAMBDA )
   19 FORMAT(I2)
   25 FORMAT(3F10.0)
C
              RAT IS THE SLAB THICKNESS, HERE = .1 WAVELENGTH
      DATA (RAT=.1)
   22 READ 19, IFR
С
С
    IFR IS NUMBER OF FREQUENCIES
С
      IF(EOF,60)400,20
   20 READ 8, (FRE(I), I=1, IFR)
С
              FRE IS THE FREQUENCY IN KHZ
С
      READ 19,NPA
С
      NPA IS NUMBER OF MAGNETIC FIELD CONDITIONS
C
      READ 25, (PHA(I), HA(I), DAP(I), I=1, NPA)
C
      PHA = PHI A = MAGNETIC AZIMUTH
      HA = HM = MAGNETIC FIELD STRENGTH IN GAUSS
C
      DAP = DIP = MAGNETIC FIELD DIP ANGLE IN DEGREES
C
      CAUTION---( (DIP=0) •AND•(PHIA=90•OR•270) ) IS NOT ALLOWED
С
С
      READ 19,NPI
       NPI = NUMBER OF ANGLES OF INCIDENCE, PHI I, IN DEGREES
С
С
```

```
READ 8, (SPHI(I), I=1, NPI)
   30 READ 7, (PROFLE(I), I=1,5), HITE, LAYR
С
С
   PROFLE IS ALPHANUMERIC DESCRIBING IONO PROFILE, HITE IS HT OF BOTTOM OF
   IONOS IN KM, LAYR IS THE NUMBER OF DATA CARDS IN IONO PROFILE TO FOLLOW
С
     A BLANK CARD RETURNS THE PROGRAM TO 22 TO READ A NEW SET OF PARAMETERS
С
С
      IF(EOF,60)400,31
   31 CONTINUE
      IF (LAYR) 22,22,32
   32 PRINT 4
      PRINT 4
                           7, (PROFLE(I), I=1,5), HITE, LAYR
      PRINT
      DO 33 L=1,LAYR
      READ 1,Z(L),EN(L)
С
   Z(L) IS THE HEIGHT IN KM, EN(L) IS THE ELECTRONS/CC AT HT Z(L)
С
С
      PRINT 1,Z(L),EN(L)
   33 CONTINUE
      PRINT 4
      PRINT
                           7, (PROFLE(I), I=1,5), HITE, LAYR
С
С
       BEGINNING OF FREQUENCY LOOP
С
      DO 300 J=1, IFR
      F=FRE(J)
      DELTA = RAT*300./F
С
С
       BEGINNING OF MAGNETIC PARAMETERS LOOP
С
      DO 290 K=1,NPA
      PHIA=PHA(K) $ HM=HA(K)
                                $ DIP=DAP(K)
      PRINT 9, PHIA, DIP, HM, RAT
      LINE = 0
      PRINT 2
      PRINT 2
      PRINT 3
      RDG=017 453 292 519 943
                                                                           MOD UP
      FIA=RDG*PHIA
                                                                           MOD UP
      DD= RDG*DIP
                                                                           MOD UP
                                                                           MOD UP
      CFIA=COSF(FIA)
      SFIA=SINF(FIA)
                                                                           MOD UP
      SI =SINF(DD)
      CI
         =COSF(DD)
  100 CONTINUE
   77 FORMAT(5A6,* PHIA=*,F6.1,* DIP=*,F6.1,* HM=*,F6.3,* GAUSS*)
      PUNCH 77, (PROFLE(I), I=1,5), PHIA, DIP, HM
C
 BEGINNING OF ANGLE OF INCIDENCE LOOP
С
С
      DO 280 L=1,NPI
      PHII=SPHI(L)
  110 FII=RDG*PHII
```

```
76
```

MOD UP

```
CFII=COSF(FII)
                                                                           MOD UP
      SFII=SINF(FII)
                                                                           MOD UP
      AT=SFII*SFIA
                                                                           MOD UP
      AL=SFII*CFIA
                                                                           MOD UP
      K1=KLOCK(0)
  150 CALL REFCOF
С
С
     REFCOF COMPUTES THE REFLECTION COEFFICIENTS. INPUT AND OUTPUT ARE IN
С
   COMMON/1/
С
  160 K2=KLOCK(1)
С
       COMPUTE QUASI STATIONARY PHASE HEIGHT
      HREF =HITE+(3.1416-TEEP)/(2.*WAVE*CFII)
      PRINT 6,F,PHII,TEEA,TEEP,TEMA,TEMP,TMEA,TMEP,TMMA,TMMP
     1,HREF
               •K2
      PUNCH 1111 , F,PHII,TEEA,TEEP,TEMA,TEMP,TMEA,TMEP,TMMA,TMMP,HITE,
     1 HREF
 1111 FORMAT(F6.1,F4.1,4(E9.3,F6.3),2F5.1)
  170 LINE=LINE+1
      IF(LINE.LE.50) GO TO 200
      PRINT 4
                           7, (PROFLE(I), I=1,5), HITE, LAYR
      PRINT
      PRINT 9, PHIA, DIP, HM, RAT
      LINE =0
      PRINT 2
      PRINT 3
      PRINT 2
  200 CONTINUE
С
С
       END OF ANGLE OF INCIDENCE LOOP
С
  280 CONTINUE
  290 CONTINUE
C END OF FREQUENCY LOOP
  300 CONTINUE
      GO TO 30
  400 CALL EXIT
      END
```

SUBROUTINE REFCOF

С

č c MAIN SUBROUTINE FOR ANIREF. COMPUTES REFLECTION COEFFICIENTS. REFERENCE IS TELECOMMUNICATIONS RESEARCH REPORT NO. 11 , Ċ BY L. A. BERRY AND J. E. HERMAN, OFFICE OF TELECOMMUNICATIONS C ITS, BOULDER COLORADO, 80302 С COMMON AR, AI, PR, PI, QR, QI, ROOT, AL, AT, F, DELTA, CFII, SFIA, CFIA, 1 CI,SI,HM,OMEGA »ZMA »WAVE »COF 2 COMMON/1/ Z, EN, LAYR, TEER, TEEI, TEEA, TEEP, TEMR, TEMI, TEMA, TEMP, 1 TMER, TMEI, TMEA, TMEP, TMMR, TMMI, TMMA, TMMP COMMON/4/ BAR, BAI DIMENSION PR(4), PI(4), QR(4), QI(4) DIMENSION BAR(4,8), BAI(4,8), COF(10), ROOT(8), P(8),Q(8) DIMENSION AR(600,8), AI(600,8), Z(80), EN(80) OMEGA=6283.1853*F WAVE=OMEGA/2.997925 E 5 NLAY = (Z(LAYR) - Z(1)) / DELTAС THERE ARE NLAY SLABS IF(NLAY .LE. 149) GO TO 10 NLAY = 149DELTA = (Z(LAYR) - Z(1)) / 149DEL = WAVE *DELTA/6.2831853 PRINT 9, DEL 9 FORMAT (* CHANGED DELTA Z TO *, F6.2, * LAMBDA.*) 10 CISA=CFII*SFIA CDEL=3.1415927/(2.*WAVE) CICA=CFII*CFIA C C INITIAL GUESS FOR ROOTS OF BOOKER QUARTIC AT BOTTOM OF IONOSPHERE ROOT(1)=CFII ROOT(2)=0. ROOT(3)=CFII ROOT(4) = 0ROOT(5) = -CFIIROOT(6)=0. ROOT(7) = -CFIIROOT(8)=0. ZK=WAVE*DELTA ZM=Z(1)+.5*DELTA ELEC=ENN(ZM) COL=CFEO(ZM) ZM IS HEIGHT AT MIDDLE OF SLAB

С С ELEC IS ELECTRON DENSITY OF SLAB, COL IS COLLISION FREQUENCY OF SLAB. С CALL CQPZ(ELEC,COL) MOD UP CALLFOLEST(8,1)

C

C

С

THE CALL TO Q9EXUN SURPRESSES THE SYSTEM EXPONENT UNDERFLOW ERROR

MOD UP

MOD UP

MOD UP

MOD UP

MOD UP

С		CHECK, DIAGNOSIS, AND HALT. (EXPONENT UNDERFLOWS ARE IGNORED)	
~		CALL Q9EXUN		
C C		FILL UP COEFFICIENT MATRIX. SEE EQ(A2) AND (A8).		
		DO 60 L=2+NLAY		
		DO 40 J=1,4		
	35	EX=EXPF(TX)		
		TY=-ZK*ROOT(2*J-1) AR(LP,J)=-EX*COSF(TY)		
		AI(LP,J)=-EX*SINF(TY) DO 40 K=1.3		
		LPK=LP+K		
		AI(LPK, J) = AI(LP, J) * AR(LPK-4, J+4) + AR(LP, J) * AI(LPK-4, J+4)		
		IF(AR(LPK,J)**2+AI(LPK,J)**2 .GE. 1.E-100) GO TO 40 NLAY=L		
	40	CONTINUE IF(L-NLAY)42.061.061		
	42			
		COL=CFEO(ZM)	MOD I	UP
	60	CALL CQP2(ELEC,COL) CALLFOLEST(8,LP)	MOD I	JP
	61	HT = ZM + DELTA CALL CQPZ(ENN(HT), CFEO(HT))		
		CALLFOLEST(6.LP) NTOP=NLAY-1		
C		BEGIN RECURSIVE SOLUTION OF MATRIX FOLASI (A6).		
c		BEGIN RECORSIVE SOLUTION OF MARKIX EQUATION OF		
	71	LA=NLAY+1-L		
		LP=4*LA-4 DO 90 I=1:4		
		LPI=LP+I DO 90 J=1,4		
		BAR(I,J) = AR(LPI,J+2) $BAI(I,J) = AI(I,PI,J+2)$		
c	90	CONTINUE MINVERT INVERTS A 6X6 COMPLEX MATRIX		
с -	98	CALL MINVERT		
C C C		THIS LOOP IS STEP 1, FOLLOWING EQ(A9).		
C		DO 140 I=1,4		
		DO 140 J=5.6		
		AR(LPA,J)=BAR(I,5)*AR(LP+1,JA)-BAI(I,5)*AI(LP+1,JA) AI(LPA,J)=BAI(I,5)*AR(LP+1,JA)+BAR(I,5)*AI(LP+1,JA)		

```
LPK=LP+K
    TX=BAR(I,K+4)*AR(LPK,JA)-BAI(I,K+4)*AI(LPK,JA)
    TY = BAI(I_{5}K+4) * AR(LPK_{5}JA) + BAR(I_{5}K+4) * AI(LPK_{5}JA)
    AR(LPA,J) = AR(LPA,J) + TX
140 AI(LPA, J) = AI(LPA, J) + TY
    THIS LOOP IS STEP 2, FOLLOWING EQ(A9)
   DO 150 I=1,4
   LPA=LP-4+I
   DO 150 J=5,6
   JA=J+2
    TX=AR(LPA,7)*AR(LP+1,J)-AI(LPA,7)*AI(LP+1,J)
    TY=AI(LPA,7)*AR(LP+1,J)+AR(LPA,7)*AI(LP+1,J)
    SX=AR(LPA,8)*AR(LP+2,J)-AI(LPA,8)*AI(LP+2,J)
    SY=AI(LPA,8)*AR(LP+2,J)+AR(LPA,8)*AI(LP+2,J)
   AR(LPA,J) = AR(LPA,J) - TX - SX
150 AI(LPA, J)=AI(LPA, J)-TY-SY
91 DO 95 J=1,2
    DO 95 I=1,4
    BAR(I,J) = AR(I,J+4)
    BAI( I, J+2) =0.
95 BAI(I,J)=AI(I,J+4)
    BAR(1,3)=SFIA
    BAR(1,4) = CICA
    BAR(2,3) = -CFIA
    BAR(2,4) = CISA
    BAR(3,3) = CISA
    BAR(3,4)=CFIA
    BAR(4,3) = CICA
    BAR(4,4) = -SFIA
    SOLVE EQ (A7).
    CALL MINVERT
    TEMR = BAR(3,5)*CICA+BAR(3,6)*CISA-BAR(3,7)*CFIA+BAR(3,8)*SFIA
   TEMI = BAI(3,5)*CICA+BAI(3,6)*CISA-BAI(3,7)*CFIA+BAI(3,8)*SFIA
   TEER = BAR(4,5)*CICA+BAR(4,6)*CISA-BAR(4,7)*CFIA+BAR(4,8)*SFIA
   TEEI = BAI(4,5)*CICA+BAI(4,6)*CISA-BAI(4,7)*CFIA+BAI(4,8)*SFIA
    TMMR = -BAR(3,5)*SFIA + BAR(3,6) *CFIA+BAR(3,7)*CISA+BAR(3,8)*CICA
    TMMI = -BAI(3,5)*SFIA + BAI(3,6) *CFIA+BAI(3,7)*CISA+BAI(3,8)*CICA
    TMER = -BAR(4,5)*SFIA + BAR(4,6) *CFIA+BAR(4,7)*CISA+BAR(4,8)*CICA
    TMEI = -BAI(4,5)*SFIA + BAI(4,6) *CFIA+BAI(4,7)*CISA+BAI(4,8)*CICA
   TEEA=CABS(CMPLX(TEER,TEEI))
    TEEP=CANG(CMPLX(TEER, TEEI))
    TEMA=CABS(CMPLX(TEMR,TEMI))
    TEMP=CANG(CMPLX(TEMR,TEMI))
    TMEA=CABS(CMPLX(TMER,TMEI))
   TMEP=CANG(CMPLX(TMER, TMEI))
    TMMA=CABS(CMPLX(TMMR,TMMI))
    TMMP=CANG(CMPLX(TMMR,TMMI))
   RETURN
   END
```

C C C

C C

С

DO 140 K=2,4

80

MOD UP

FUNCTION ENN(ZM)

```
C
C
```

USES LOGARITHMIC INTERPOLATION IN TABLE OF N(H) TO GET ELECTRON DENSITY AT ZM

```
DIMENSION Z(80), EN(80)
   COMMON/1/ Z, EN, LAYR, TEER, TEEI, TEEA, TEEP, TEMR, TEMI, TEMA, TEMP,
  1 TMER, TMEI, TMEA, TMEP, TMMR, TMMI, TMMA, TMMP
   KID=1
   IF(Z(LAYR)-ZM)70,70,25
70 ENN=EN(LAYR)
   GO TO 71
25 IF(Z(KID+1)-ZM)26,27,28
26 KID=KID+1
   GO TO 25
27 ENN=EN(KID+1)
   GO TO 71
28 TX = (ZM - Z(KID)) / (Z(KID+1) - Z(KID))
   ENN= EN(KID)*EXPF(TX*LOGF(EN(KID+1)/EN(KID)))
71 CONTINUE
   RETURN
   END
```

FUNCTION CFEO(H)

C C C C

```
WHERE P9 IS A NINTH DEGREE POLYNOMIAL.
DIMENSION A(10)
DATA((A(I),I=1,9)=2.587803463E1, -1.210027715E-1, -1.462645167E-3
1, -1.172264046E-5, 1.749042668E-6, -2.948406644E-8, 1.351055095E-
2 10, 4.11118378E-13, -3.289391577E-15 )
SUM =A(9)
DO 10 J=1,8
10 SUM = H*SUM +A(9-J)
CFEO = EXPF(SUM)
RETURN
END
```

DASA COLLISION FREQUENCY MODEL FIT WITH EXP(P9),

SUBROUTINE CQPZ(ELEC,COL)

C C

С

C

MOD ONE

SUBROUTINE FOR REFCOF. RETURNS THE ROOTS OF THE QUARTIC, AND THE FIELD RATIOS P AND Q, SEE JOHLER AND HARPER, JAN 1961 RADIO SCIENCE. COMMON AR, AI, PR, PI, QR, QI, ROOT, AL, AT, F, DELTA, CFII, SFIA, CFIA, 1 CI,SI,HM,OMEGA 2 ,ZMA,WAVE,COF DIMENSION COF(10), PR(4), PI(4), QR(4), QI(4), ZR(4), ZI(4) DIMENSION AR(600,8), AI(600,8) DIMENSION ROOT(8), TOOT(4), ZOOTR(4), ZOOTI(4), ZZR(4), ZZI(4) JU=1 JD=4 Y=1.75888 E 7 *HM/OMEGA YT= Y*CI YL=-Y*SI X=(3.1824858 E 9*ELEC)/(OMEGA*OMEGA) Z=+COL/OMEGA ATSQ=AT*AT ALSQ=AL*AL CSQ =1. -ATSQ-ALSQ XSQ=X*X YSQ = Y*YZSQ=Z*Z YLSQ=YL*YL YTSQ=YT*YT UR=1. UI = -ZU2R=1. -ZSQ U2I=-2• *Z TAR=1.-ZSQ-YSQ $TAI = 2 \cdot Z$ TX=TAR*TAR+TAI*TAI TX = -X/TXTAR=TAR*TX TAI=TAI*TX -TAI*UI PXXR=TAR PXXI=TAR*UI+TAI PXYR=-YL*TAI PXYI= YL*TAR PXZR= YT*TAI PXZI=-YT*TAR PZXR=-PXZR PZXI=-PXZI TX=1.+ZSQ TBR=(TAR-TAI*Z)/TX TBI=(TAI+TAR*Z)/TX TCR=U2R-YLSQ TCI=U2I PZZR=TBR*TCR-TBI*TCI PZZI=TBR*TCI+TBI*TCR PZYR=-YL*YT*TBR PZYI=-YL*YT*TBI TCR=U2R-YTSQ

```
TCI=PXXI*(1.-ATSQ)+PYYI*(1.-ALSQ)+PZZI
COEFFICIENTS OF BOOKER QUARTIC
   COF(9)=1 + PZZR
   COF(10) = PZZI
   COF(7)=2.*AL*PZYR
   COF(8)=2.*AL*PZYI
   COF(5)=-2.*CSQ+2.*X*TAR-TCR-CSQ*PZZR
   COF(6) =
                  2.*X*TAI-TCI-CSQ*PZZI
   COF(3) = -CSQ*COF(7)
   COF(4) = -CSQ*COF(8)
   COF(1)=CSQ*CSQ+CSQ*TCR-(2.*CSQ+1.)*X*TAR+XSQ*TBR
                  CSQ*TCI-(2.*CSQ+1.)*X*TAI+XSQ*TBI
   COF(2) =
   CALL ZROOT
   DO 9 I=1,4
   II = I + I
   ZR(I) = ROOT(II-1)
   ZI(I) = ROOT(II)
 9 CONTINUE
   R12R=AL*AT+PXYR
   R12I=PXYI
   R33R=CSQ+PZZR
   R33I=PZZI
 COMPUTE P AND Q IN THE 40 LOOP
   DO 40 I=1,4
   ZRSQ=ZR(I)*ZR(I)-ZI(I)*ZI(I)
   ZISQ=2 *ZR(I)*ZI(I)
   R11R=1.-ALSQ-ZRSQ+PXXR
   R11I=-ZISQ+PXXI
   R13R=AT*ZR(I)+PXZR
   R13I=AT*ZI(I)+PXZI
   R31R=AT*ZR(I)+PZXR
   R31I=AT*ZI(I)+PZXI
   R32R=AL*ZR(I)+PZYR
   R32I=AL*ZI(I)+PZYI
   DENR=R33R*R11R-R33I*R11I - R13R*R31R+R13I*R31I
   DENI=R13I*R31R+R13R*R31I - R33I*R11R-R33R*R11I
   TX=DENR*DENR +DENI*DENI
   PPR=R12R*R31R-R12I*R31I -R32R*R11R+R32I*R11I
   PPI=R12I*R31R+R12R*R31I -R32I*R11R-R32R*R11I
   QQR=R13R*R32R-R13I*R32I -R33R*R12R+R33I*R12I
   QQI=R13I*R32R+R13R*R32I -R33I*R12R-R33R*R12I
   TX1=PPR*DENR-PPI*DENI
   PPI=PPI*DENR+PPR*DENI
   PPR=TX1
   TX1=QQR*DENR-QQI*DENI
   QQI=QQI*DENR+QQR*DENI
   QQR=TX1
```

```
C
C
C
```

C C

С

PYYR=TBR*TCR-TBI*TCI PYYI=TBR*TCI+TBI*TCR

TCR=PXXR*(1.-ATSQ)+PYYR*(1.-ALSQ)+PZZR

	PR(I)=PPR/TX
	PI(I)=PPI/TX
	QR(I)=QQR/TX
	QI(I) = QQI/TX
40	CONTINUE
	RETURN
	END

C C

С

SUBROUTINE FOLEST(JJ,LP) SUBROUTINE FOR REFCOF. FILLS UP COL 5 - 8 OF EQ (A8). DIMENSION PR(4), PI(4), QR(4), QI(4), ROOT(8), P(8), Q(8) DIMENSION AR(600,8), AI(600,8) DIMENSION COF(10) COMMON AR, AI, PR, PI, QR, QI, ROOT, AL, AT, F, DELTA, CFII, SFIA, CFIA, 1 CI,SI,HM,OMEGA 2 ,ZMA,WAVE,COF DO 100 K=1,4 KK=2*K P(KK-1) = PR(K)b(KK) = bI(K)Q(KK-1) = QR(K)100 Q(KK) = QI(K)DO 20 J=5,JJ JP=2*J-9AR(LP,J)=1. AI(LP,J)=0. AR(LP+1,J)=Q(JP)AI(LP+1,J)=Q(JP+1)AR(LP+2,J)=AL*P(JP)-ROOT(JP)AI(LP+2,J)=AL*P(JP+1)-ROOT(JP+1)TX = ROOT(JP) * Q(JP) - ROOT(JP+1) * Q(JP+1)TY=ROOT(JP+1)*Q(JP)+ROOT(JP)*Q(JP+1)AR(LP+3,J)=TX-AT*P(JP)20 AI(LP+3,J)=TY-AT*P(JP+1) RETURN END

: .

```
SUBROUTINE ZROOT
С
С
      ZROOT FINDS THE ROOTS OF A QUARTIC WITH COMPLEX COEFFICIENTS
C
C
C
      USING THE NEWTON'RAPHSON METHOD TO FIND THE FIRST TWO ROOTS,
      AND THE QUADRATIC FORMULA FOR THE OTHER TWO. COF(1)+1*COF(2) IS
      THE CONSTANT TERM, COF(3)+I*COF(4) IS THE COEFFICIENT OF Z
                                                                       •ETC
C
      THE ROOTS ARE ROOT(2*K-1)+I*ROOT(2*K),K=1,4 WRITTEN BY B. WEIDER
С
      DIMENSION COF(10), ROOT(8)
      DIMENSION AR(600,8), AI(600,8), VR(4), VI(4), WR(4), WI(4)
      COMMON AR, AI, VR, VI, WR, WI, ROOT, AL, AT, F, DELTA, CFII, SFIA, CFIA,
     1 CI,SI,HM,OMEGA
       »ZMA »WAVE »COF
     2
      J=1
      JRT=2
      JCOF=10
 1000 EPSILON=1.E-8
  999 JROOT=JRT+JRT
      L=0
C
C
      USE ROOT FOR PREVIOUS CASE AS FIRST GUESS
С
      XR=ROOT(JROOT-1)
      XI=ROOT(JROOT)
    1 I=JCOF-J
      L=L+1
      YR=XR
      YI = XI
      FR=COF(I)
      FI=COF(I+1)
    2 I=I-2
      TX=XR*FR-XI*FI+COF(I)
      FI=XR*FI+XI*FR+COF(I+1)
      FR=TX
      IF(I.GT.1) GO TO 2
      A=FR
      B=FI
C
C
      A+I*B=P(XR+I*XI)
С
      I=JCOF-J
      CCOF=(I-1)/2
      GR=CCOF*COF(I)
      GI=CCOF*COF(I+1)
    4 I = I - 2
      CCOF=CCOF-1.
      TX=XR*GR-XI*GI+CCOF*COF(I)
      GI=XR*GI+XI*GR+CCOF*COF(I+1)
      GR=TX
      IF(I.GT.3) GO TO 4
      C=GR
      D=GI
С
С
      C+I*D=DERIVATIVE OF P(XR+I*XI)
```

```
85
```

С ASSIGN 5 TO LSW GO TO 400 5 EPSR=X EPSI=Y С С EPSR+I*EPSI=CORRECTION TO ROOT. Ĉ A=EPSR B=EPSI C=XR D=XI ASSIGN 6 TO LSW GO TO 400 6 X = ABSF(X)Y = ABSF(Y)C C C HAVE WE CONVERGED IF(X.GT.EPSILON) GO TO 7 IF(Y.LT.EPSILON) GO TO 60 7 XR=XR-EPSR XI=XI-EPSI IF(L.LE.10) GO TO 1 EPSILON=10.*EPSILON L=0 IF(EPSILON .GT. 1.1E-6) PRINT 800, EPSILON, ZMA 800 FORMAT(1H0,* INCREASED EPSILON TO*, E9.1,* IN ZROOT AT HEIGHT*, 1 F8.2//) GO TO 1 60 ROOT(JROOT-1)=XR ROOT(JROOT)=XI N=JCOF-3 61 A=COF(N+2) B=COF(N+3)X=A*XR-B*XI Y=A*XI+B*XR COF(N) = COF(N) + XCOF(N+1) = COF(N+1) + YN=N-2IF(N.GT.1)GO TO 61 N=JCOF-2 DO 62 K=1.N COF(K) = COF(K+2)62 CONTINUE JCOF=JCOF-2 JRT=JRT+2 IF(JRT.LE.4) GO TO 1000 C C FROM HERE TO 72+4 IS QUADRATIC FORMULA С X = COF(3) * COF(3) - COF(4) * COF(4)A=COF(3)*COF(4)Y = A + A

A=4.*(COF(1)*COF(5)-COF(2)*COF(6)) B=4**(COF(1)*COF(6)+COF(2)*COF(5)) A=X-A B=Y-B ASSIGN 70 TO LSW GO TO 500 70 A=X B=Y C=2.*COF(5) D=2*COF(6)ASSIGN 71 TO LSW GO TO 400 71 TX=X TY=Y A = COF(3)B=COF(4) ASSIGN 72 TO LSW GO TO 400 72 A = -X + TXB=-Y+TY C = -X - TXD=-Y-TY IF(B) 73,75,74 73 ROOT(1)=A ROOT(2)=B ROOT(5)=CROOT(6)=DGO TO 78 74 ROOT(1)=C ROOT(2)=DROOT(5) = AROOT(6) = BGO TO 78 75 IF(A.GT.O.) GO TO 76 ROOT(1) = CROOT(5) = AGO TO 77 76 ROOT(1)=A ROOT(5)=C77 ROOT(2)=0. ROOT(6)=0. 78 CONTINUE RETURN C C THIS IS A COMPLEX DIVISION BRANCH. X+I*Y=(A+I*B)/(C+I*D) С 400 IF(C)410,405,410 405 IF(D)406,440,406 406 X=B/D Y=-A/D GO TO LSW 410 IF(D)415,411,415 411 X=A/C Y=B/C

```
GO TO LSW
  415 IF(ABSF(C)-ABSF(D))416,430,430
  416 AX=C/D
      DEN=AX*C+D
      X = (A*AX+B)/DEN
      Y = (B*AX-A)/DEN
      GO TO LSW
  430 AX=D/C
      DEN=C+AX*D
      X = (A+B*AX)/DEN
      Y=(B-A*AX)/DEN
      GO TO LSW
  440 PRINT 401
  401 FORMAT(* ZERO DIVISOR IN ZMROOT DIVIDE*)
      CALL EXIT
С
С
      THIS IS A COMPLEX SQUARE ROOT BRANCH. X+I*Y=SQRT(A+I*B).
С
  500 S=1.
      IF(B)501,505,505
  501 S=-1.
  505 IF(A)502,504,502
  502 X = SQRTF(.5*(SQRTF(A*A+B*B)+ABSF(A)))
      D=B/(2.*X)
      Y=D
      IF(A.GE.O.)GO TO LSW
      Y=S*X
      X=S*D
      GO TO LSW
  504 X=SQRTF(S*B*•5)
      Y=S*X
      GO TO LSW
      END
```

SUBROUTINE MINVERT

INDEX(I1)=IROW

INVERTS 4X4 COMPLEX MATRIX

C C C

COMMON /4/ BR, AR, BI, AI DIMENSION IPVOT(4), INDEX(8), PIVOTR(4), PIVOTI(4) XIRTAM DIMENSION AR(16), AI(16), BR(16), BI(16) XIRTAM N=4 \$ NSQ=16 XIRTAM DO 888 I=1,NSQ AR(I) = BR(I)XIRTAM AI(I) = BI(I)XIRTAM 888 CONTINUE DETR=1. XIRTAM DETI=0. XIRTAM DO 17 J=1,N IPVOT(J)=0 XIRTAM 17 CONTINUE DO 135 I=1.N TR=0. XIRTAM • 0=IT XIRTAM DO 9 J=1,N IF(IPVOT(J).EQ.1)GO TO 9 XIRTAM NK = -NDO 23 K=1.N NK=NK+N JK=J+NK IF(IPVOT(K)-1)43,23,81 XIRTAM 43 IF((TR*TR+TI*TI)-(AR(JK)*AR(JK)+AI(JK)*AI(JK)))83,23,23 XIRTAM 83 IROW=J XIRTAM ICOL=K XIRTAM TR=AR(JK) XIRTAM TI=AI(JK) 23 CONTINUE 9 CONTINUE IPVOT(ICOL)=IPVOT(ICOL)+1 XIRTAM IF(IROW.EQ.ICOL)GO TO 109 XIRTAM XIRTAM DETR=-DETR DETI=-DETI XIRTAM NL=-N DO 12 L=1,N NL=NL+N XIRTAM IROWL=IROW+NL XIRTAM ICOLL=ICOL+NL XIRTAM TR=AR(IROWL) XIRTAM TI=AI(IROWL) XIRTAM AR(IROWL) = AR(ICOLL) XIRTAM AI(IROWL)=AI(ICOLL) XIRTAM AR(ICOLL)=TR XIRTAM AI(ICOLL)=TI XIRTAM 12 CONTINUE 109 Il=I XIRTAM I2=I+NXIRTAM ICOLICOL=ICOL+N*(ICOL-1) XIRTAM

89

XIRTAM

	INDEX(I2)=ICOL	XIRTAM
	PIVOTR(I)=AR(ICOLICOL)	XIRTAM
	PIVOTI(I)=AI(ICOLICOL)	XIRTAM
	TXR=DETR*PIVOTR(I)-DETI*PIVOTI(I)	XIRTAM
	TXI=DFTR*PIVOTI(I)+DETI*PIVOTR(I)	XIRTAM
	DETRETXR	XIRTAM
		XIRTAM
		YIPTAM
		VIDTAM
		AINTAM
	DO 205 L=1,N	
	NL=NL+N	
	ICOLL=ICOL+NL	XIRTAM
	DXR=PIVOTR(I)*PIVOTR(I)+PIVOTI(I)*PIVOTI(I)	XIRTAM
	TXR=AR(ICOLL)*PIVOTR(I)+AI(ICOLL)*PIVOTI(I)	XIRTAM
	TXI=AI(ICOLL)*PIVOTR(I)-AR(ICOLL)*PIVOTI(I)	XIRTAM
	AR(ICOLL)=TXR/DXR	XIRTAM
	AI(ICOLL)=TXI/DXR	XIRTAM
205	CONTINUE	
	DO 135 LI=1.N	
	IF(LI-ICOL)21,135,21	XIRTAM
21	LIICOL = LI + N*(ICOL - 1)	XIRTAM
-	TR=AR(LIICOL)	XIRTAM
		XIRTAM
	AR(L IICO) = 0	XIRTAM
		XIRTAM
		XIRTAM
		X 2 1 (1 / 1 / 1 /
		YIRTAM
	I = N = N = N = N = N = N = N = N = N =	YIRTAM
		XIRTAM
		YIRTAM
		YIRTAM
		VIDTAM
		VIDTAM
00		AINTAM
105		
135		
		VIDTAM
		XIRIAM
		XIRIAM
10		XIRIAM
19	JROW INDEX(L1)	XIRIAM
	JCOL=INDEX(12)	XIRIAM
	NJROW=N*(JROW-1)	
	NJCOL=N*(JCOL-1)	
	D0 549 K=1+N	
	KJROW=K+NJROW	
	KJCOL=K+NJCOL	
	IR=AR(KJROW)	XIRTAM
	II=AI(KJKUW)	XIRTAM
	AR(KJROW)=AR(KJCOL)	XIRTAM
	AI(KJROW)=AI(KJCOL)	XIRTAM
	AR(KJCOL)=TR	XIRTAM
	AI(KJCOL)=TI	XIRTAM

549 CONTINUE 3 CONTINUE 81 CONTINUE RETURN END

XIRTAM XIRTAM If no electron density-height function is known, use the subroutine. The electron density profile is a function of the sun's zenith angle, hence a function of month, day, and hour.

С

С

С

С

FUNCTION ENN(H) MOD VIII CF THE D REGION H IS HEIGHT IN KM, ENN IS ELECTRON DENSITY PER CC. CHI IS SUNS ZENITH ANGLE IN DEGREES USE ABSOLUTE VALUE OF CHI AS IT IS SYMMETRIC ABOUT ZERO DIMENSION Z(80), EN(80) COMMON/1/ Z, EN, LAYR, TEER, TEEI, TEEA, TEEP, TEMR, TEMI, TEMA, TEMP, 1 TMER, TMEI, TMEA, TMEP, TMMR, TMMI, TMMA, TMMP DATA (CHIO =0.), (EN1=80.), (H1=65.), (B=.15), (H2=72.), (SCALH=3.3) EQUIVALENCE (Z(2), CHI) IF (CHI .EQ. CHIO) GO TO 50 CHIO =CHI H1=65. IF(CHI .GE. 90.3) H1=65.+(CHI-90.3)*1.03 EN1=80. IF(CHI .GT. 97.) EN1=0. IF(CHI.LE.97. .AND. CHI.GT.95.) EN1=4.*(97.-CHI) IF(CHI.LE. 95. .AND. CHI.GT.90.) EN1=80.*10.**((90.-CHI)/5.) B=•15 IF(CHI .GE. 100.) B=.35 IF(CHI.GT.70. • AND. CHI.LT. 100.) B= •15+(CHI-70.)/30.*.20 IF(CHI .GE. 90.) H2=94. IF(CHI .LT. 90.) H2=94.-22.*COS(CHI*.01745329252) 50 Q=(H-H1)/SCALH IF(CHI.GT. 97.) 55,52 52 CN=EN1*EXP(1 - Q - EXP(-Q))GO TO 60 55 CN=0. 60 DN=1000.*EXP(B*(H-H2)) ENN=CN+DN RETURN END

Given the month, day, hour, latitude, and	
longitude, this subroutine calculates the	
sun's zenith angle which is used in the	
alternate Function ENN listed.	
FUNCTION SOL ZEN(MONTH, DAY, TIME, LAT, LONG) CALCULATES THE SOLAR ZENITH ANGLE AT THE GIVEN MONTH, DAY, TIME, LONG, LAT	
C	
C MONTH, 1-12	
C DAY, 1-31	
C TIME, HOUR= 0-24	
C LAT=LATITUDE, RADIANS, +=NORTH, -=SOUTH	
C LONG = LONGITUDE, RADIANS EAST	
REAL MONTH,LAT,LONG DATA (PI=3,141592654)	
GLAT=PI/180•*23•5*SIN(2•*PI*(30•5*(MONTH-3•)+DAY-21•)/365•)	
GLON =-PI/180•*15•*TIME+PI	
SOL ZEN=ACOS(SIN(LAT)*SIN(GLAT)+COS(LAT)*COS(GLAT)*COS(GLUN-LONG)) RETURN	
END	

.

.